international vlbi service
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 14)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 95 (5) ◽  
Author(s):  
Matthias Schartner ◽  
Christian Plötz ◽  
Benedikt Soja

AbstractWithin this work, a new geodetic very long baseline interferometry (VLBI) scheduling approach inspired by evolutionary processes based on selection, crossover and mutation is presented. It mimics the biological concept “surviving of the fittest” to iteratively explore the scheduling parameter space looking for the best solution. Besides providing high-quality results, one main benefit of the proposed approach is that it enables the generation of fully automated and individually optimized schedules. Moreover, it generates schedules based on transparent rules, well-defined scientific goals and by making decisions based on Monte Carlo simulations. The improvements in terms of precision of geodetic parameters are discussed for various observing programs organized by the International VLBI Service for Geodesy and Astrometry (IVS), such as the OHG, R1, and T2 programs. In the case of schedules with a difficult telescope network, an improvement in the precision of the geodetic parameters up to 15% could be identified, as well as an increase in the number of observations of up to 10% compared to classical scheduling approaches. Due to the high quality of the produced schedules and the reduced workload for the schedulers, various IVS observing programs are already making use of the evolutionary parameter selection, such as the AUA, INT2, INT3, INT9, OHG, T2 and VGOS-B program.


2021 ◽  
Author(s):  
Rüdiger Haas ◽  
Eskil Varenius ◽  
Periklis-Konstantinos Diamantidis ◽  
Saho Matsumotu ◽  
Matthias Schartner ◽  
...  

<p>The VLBI Global Observing System (VGOS) is the VLBI contribution to GGOS. During the last years, several VGOS stations have been established, the VGOS observation program has started, and by 2021 VGOS has achieved an operational state involving nine international VGOS stations. Further VGOS stations are currently being installed, so that the number of active VGOS stations will increase drastically in the near future. In the end of 2019 the International VLBI Service for Geodesy and Astrometry (IVS) decided to start a new and so-far experimental VGOS-Intensive series, called VGOS-B, involving Ishioka (Japan) and Onsala (Sweden). Both sites operate modern VGOS stations with 13.2~m diameter radio telescopes, i.e. ISHIOKA (IS) in Japan, and ONSA13NE (OE) and ONSA13SW (OW) in Sweden. In total 12 VGOS-B sessions were observed between December 2019 and February 2020, one every week, in parallel and simultaneously to legacy S/X INT1 Intensive sessions that involve the stations KOKEE (KK) on Hawaii and WETTZELL (WZ) in Germany. These 1-hour long VGOS-B sessions consist of more than fifty radio source observations, resulting in about 1.6 TB of raw data that are collected at each station. The scheduling of the VGOS-B sessions was done using <em>VieSched++</em> and the subsequent steps (correlation, fringe-fitting, database creation) were carried out at the Onsala Space Observatory using <em>DIFX</em> and <em>HOPS</em>. The resulting VGOS databases were  analysed with several VLBI analysis software packages, involving <em>nuSolve</em>, <em>c5++</em> and <em>ASCOT</em>. In this presentation, we give an overview on the VGOS-B series, present our experiences, and discuss the obtained results. The derived UT1-UTC results were compared to corresponding results from standard legacy S/X Intensive sessions (INT1/INT2), as well to the final values of the International Earth Rotation and Reference Frame Service (IERS), provided in IERS Bulletin~B. <br>The VGOS-B series achieve 3-4 times lower formal uncertainties for the UT1-UTC results than standard legacy S/X INT series.  Furthermore, the root mean square (RMS) agreement with respect to the IERS Bulletin B is 30-40 % better for the VGOS-B results than for the INT1/INT2 results.</p>


2021 ◽  
Author(s):  
Dhiman Mondal ◽  
Pedro Elosegui ◽  
John Barrett ◽  
Brian Corey ◽  
Arthur Niell ◽  
...  

<p>The next-generation VLBI system called VGOS (VLBI Global Observing System) has been designed and built as a significant improvement over the legacy geodetic VLBI system to meet the accuracy and stability goals set by the Global Geodetic Observing System (GGOS). Improved geodetic products are expected as the VGOS technique transitions from demonstration to operational status, which is underway. Since 2019, a network of nine VGOS stations has been observing bi-weekly under the auspices of the International VLBI Service for Geodesy and Astrometry (IVS) to generate standard geodetic products. These products, together with the mixed-mode VLBI observations that tie the VGOS and legacy networks together will be contributions to the next realization of the International Terrestrial Reference Frame (ITRF2020). Moreover, since 2020 a subset of 2 to 4 VGOS stations has also been observing in a VLBI Intensive-like mode to assess the feasibility of Earth rotation (UT1) estimation using VGOS. Intensives are daily legacy VLBI observations that are run on a daily basis using a single baseline between Kokee Park Geophysical Observatory, Hawaii, and Wettzell Observatory, Germany, made with the goal of near-real-time monitoring of UT1. In this presentation, we will describe the VGOS observations, correlation, post-processing, and preliminary geodetic results, including UT1. We will also compare the VGOS estimates to estimates from legacy VLBI, including estimates from mixed-mode observations, to explore the precision and accuracy of the VGOS products.</p>


2021 ◽  
Author(s):  
Hendrik Hellmers ◽  
Sabine Bachmann ◽  
Daniela Thaller ◽  
Mathis Bloßfeld ◽  
Manuela Seitz

<p>The ITRF2020 will be the next official solution of the International Terrestrial Reference Frame and the successor of the currently used frame, i.e., ITRF2014. Based on an inter-technique combination of all four space geodetic techniques VLBI, GNSS, SLR and DORIS, contributions from different international institutions lead to the global ITRF2020 solution. In this context, the IVS Combination Centre operated by the Federal Agency for Cartography and Geodesy (BKG, Germany) in close cooperation with the Deutsches Geodätisches Forschungsinstitut (DGFI-TUM, Germany) generates the final contribution of the International VLBI Service for Geodesy and Astrometry (IVS). Thereby, an intra-technique combination utilizing the individual contributions of multiple Analysis Centres (AC) is applied.</p><p>For the contribution to the upcoming ITRF2020 solution, sessions containing 24h VLBI observations from 1979 until the end of 2020 are processed by 10 to 12 ACs and submitted to the IVS Combination Centre. The required SINEX format includes datum-free normal equations containing station coordinates and source positions as well as full sets of Earth Orientation Parameters (EOP). For ensuring a consistently combined solution, time series of EOPs, source positions and station coordinates as well as a VLBI-only Terrestrial Reference Frame (VTRF) and a Celestial Reference Frame (CRF) were generated and further investigated.</p><p>One possibility to assess the quality of the IVS contribution to the ITRF2020 solution is to carry out internal as well as external comparisons of the estimated EOP. Thereby, estimates of the individual ACs as well as external time series (e.g. IERS C04, Bulletin A, JPL-Comb2018) serve as a reference. The evaluation of the contributions by the ACs, the combination procedure and the results of the combined solution for station coordinates, source positions and EOPs will be presented.</p>


2021 ◽  
Author(s):  
Matthias Schartner ◽  
Christian Plötz ◽  
Benedikt Soja

<p>Since mid-2020, various Very Long Baseline Interferometry (VLBI) observation programs organized by the International VLBI Service for Geodesy and Astrometry (IVS) are scheduled using a new algorithm inspired by evolutionary processes based on selection, crossover and mutation. It mimics the biological concept "survival of the fittest" to iteratively explore the scheduling parameter space looking for the best solution.</p><p>In this work, we will present the general workflow of the algorithm as well as discuss its strengths and potential weaknesses. Moreover, we will highlight how the improved scheduling affects the precision of geodetic parameters. In the case of difficult-to-schedule OHG sessions, an improvement in the precision of the geodetic parameters of up to 15% could be identified based on Monte-Carlo simulations, as well as an increase in the number of observations of up to 10% compared to classical scheduling approaches.</p>


2021 ◽  
Author(s):  
Xavier Collilieux ◽  
Jean-Michael Muller ◽  
Damien Pesce

<p>A local tie survey was carried out at Hartebeesthoek observatory (South Africa) in February 2014 by surveyors from Rural Development & Land Reform, University of KwaZulu-Natal, NASA and IGN. Hartebeesthoek observatory is one of the few sites in the world which currently hosts instruments from the four space geodesy techniques, namely DORIS, GNSS, SLR and VLBI. A first adjustment of the survey observations was carried out in 2014 and the tie vectors between instrument reference points were published.</p><p>As the precision of the VLBI axis offsets was requested by the International VLBI Service and a new version of the IGN adjustment software COMP3D was released, it was decided to reprocess the survey data of the main Hartebeesthoek observatory sub-site HartRAO. Indeed, the new software package allows processing in one step complex survey data, specifically in case of indirect determination of VLBI and SLR telescope reference points. The new processing strategy will be described and the tie vectors compared with 2014 results.</p>


2021 ◽  
Author(s):  
Hana Krásná ◽  
David Mayer ◽  
Sigrid Böhm

<p>The next realization of the International Terrestrial Reference System, the ITRF2020, is planned to be released in 2021. Our joint VLBI Analysis Center VIE which runs between TU Wien and BEV is one of eleven IVS (International VLBI Service for Geodesy and Astrometry) analysis centres which provide VLBI input to the ITRF2020. The SINEX files submitted to the IVS Combination Center are produced with the Vienna VLBI and Satellite Software VieVS and contain unconstrained normal equation systems for station position, source coordinates and Earth orientation parameters. In this presentation, we document the included sessions and stations in our submission and introduce the Vienna terrestrial reference frame based on our contribution to the ITRF2020. In particular, we highlight special settings in the Vienna solution and assess the impact on the terrestrial reference frame.</p>


2021 ◽  
Vol 55 ◽  
pp. 23-31
Author(s):  
Markus Mikschi ◽  
Johannes Böhm ◽  
Matthias Schartner

Abstract. The International VLBI Service for Geodesy and Astrometry (IVS) is currently setting up a network of smaller and thus faster radio telescopes observing at broader bandwidths for improved determination of geodetic parameters. However, this new VLBI Global Observing System (VGOS) network is not yet strongly linked to the legacy S/X network and the International Terrestrial Reference Frame (ITRF) as only station WESTFORD has ITRF2014 coordinates. In this work, we calculated VGOS station coordinates based on publicly available VGOS sessions until the end of 2019 while defining the geodetic datum by fixing the Earth orientation parameters and the coordinates of the WESTFORD station in an unconstrained adjustment. This set of new coordinates allows the determination of geodetic parameters from the analysis of VGOS sessions, which would otherwise not be possible. As it is the concept of VGOS to use smaller, faster slewing antennas in order to increase the number of observations, shorter estimation intervals for the zenith wet delays and the tropospheric gradients along with different relative constraints were tested and the best performing parametrization, judged by the baseline length repeatability, was used for the estimation of the VGOS station coordinates.


2020 ◽  
Author(s):  
Dirk Behrend ◽  
Axel Nothnagel ◽  
Johannes Böhm ◽  
Chet Ruszczyk ◽  
Pedro Elosegui

<p>The International VLBI Service for Geodesy and Astrometry (IVS) is a globally operating service that coordinates and performs Very Long Baseline Interferometry (VLBI) activities through its constituent components. The VLBI activities are associated with the creation, provision, dissemination, and archiving of relevant VLBI data and products. The operational station network of the IVS currently consists of about 40 radio telescopes worldwide, subsets of which participate in regular 24-hour and 1-hour observing sessions. This legacy S/X observing network dates back in large part to the 1970s and 1980s. Because of highly demanding new scientific requirements such as sea-level change but also due to the aging infrastructure, the larger IVS community planned and started to implement a new VLBI system called VGOS (VLBI Global Observing System) at existing and new sites over the past several years. In 2020, a fledgling network of 8 VGOS stations started to observe in operational IVS sessions. We anticipate that the VGOS network will grow over the next couple of years to a global network of 25 stations and will eventually replace the legacy S/X system as the IVS production system. We will provide an overview of the recent developments and anticipated evolution of the geodetic VLBI station infrastructure.</p>


2020 ◽  
Author(s):  
Rüdiger Haas ◽  
Eskil Varenius ◽  
Grzegorz Klopotek ◽  
Periklis-Konstantinos Diamantidis ◽  
Saho Matsumoto ◽  
...  

<p>The VLBI Global Observing System (VGOS) is the VLBI contribution to GGOS. During the last years, several VGOS stations have been established, the VGOS observation program has started, and by 2020 VGOS has achieved an operational state involving eight international VGOS stations. Further VGOS stations are currently installed, so that the number of active VGOS stations will increase drastically in the near future. In the end of 2019 the International VLBI Service for Geodesy and Astrometry (IVS) decided to start a new and so-far experimental VGOS-Intensive series, called VGOS-B, involving Ishioka (Japan) and Onsala (Sweden). Both sites operate modern VGOS stations with 13.2 m diameter radio telescopes, i.e. ISHIOKA (IS) in Japan, and ONSA13NE (OE) and ONSA13SW (OW) in Sweden. In total 12 VGOS-B sessions were planned to be observed between December 2019 and February 2020, one every week, in parallel and simultaneously to legacy S/X INT1 Intensive sessions that involve the stations KOKEE (KK) on Hawaii and WETTZELL (WZ) in Germany. The 1-hour long VGOS-B sessions consist of more than fifty radio source observations, resulting in about 1.6 TB of raw data that are collected at each station. The scheduling of the VGOS-B sessions is done at Vienna University of Technology using <em>VieSched++</em> and the subsequent steps (correlation, fringe-fitting, database creation) are planned to be carried out at the Onsala Space Observatory using <em>DIFX</em> and <em>HOPS</em>. The resulting VGOS databases are planned to be analysed with several VLBI analysis software packages, involving <em>nuSolve</em>, <em>c5++</em> and <em>ivg::ASCOT</em>. In this presentation, we give an overview on the VGOS-B series, present our experiences, and discuss the obtained results.</p>


Sign in / Sign up

Export Citation Format

Share Document