Pulse control of simple mechanical systems using proof-mass actuators

1991 ◽  
Author(s):  
DAVID ZIMMERMAN ◽  
DAVID DELPHENICH
1981 ◽  
Vol 107 (6) ◽  
pp. 1011-1028
Author(s):  
Firdaus E. Udwadia ◽  
Sayeed Tabaie

1985 ◽  
Vol 107 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Z. Prucz ◽  
T. T. Soong ◽  
A. Reinhorn

An efficient pulse control method for insuring safety of simple mechanical systems is developed and its sensitivity to the excitation frequency content and to various control parameters is studied. The control algorithm, consisting of applying pulse forces in a feedback fashion, is designed to insure that maximum system response is limited to safe values at all times. It is shown that the proposed algorithm is simple to implement and is efficient in controlling peak response in terms of on-line computation and pulse energy required. The technique is illustrated and analyzed for a single-degree-of-freedom linear system.


1991 ◽  
Vol 161 (2) ◽  
pp. 13-75 ◽  
Author(s):  
Lev V. Prokhorov ◽  
Sergei V. Shabanov

2019 ◽  
Vol 13 (3) ◽  
pp. 5334-5346
Author(s):  
M. N. Nguyen ◽  
L. Q. Nguyen ◽  
H. M. Chu ◽  
H. N. Vu

In this paper, we report on a SOI-based comb capacitive-type accelerometer that senses acceleration in two lateral directions. The structure of the accelerometer was designed using a proof mass connected by four folded-beam springs, which are compliant to inertial displacement causing by attached acceleration in the two lateral directions. At the same time, the folded-beam springs enabled to suppress cross-talk causing by mechanical coupling from parasitic vibration modes. The differential capacitor sense structure was employed to eliminate common mode effects. The design of gap between comb fingers was also analyzed to find an optimally sensing comb electrode structure. The design of the accelerometer was carried out using the finite element analysis. The fabrication of the device was based on SOI-micromachining. The characteristics of the accelerometer have been investigated by a fully differential capacitive bridge interface using a sub-fF switched-capacitor integrator circuit. The sensitivities of the accelerometer in the two lateral directions were determined to be 6 and 5.5 fF/g, respectively. The cross-axis sensitivities of the accelerometer were less than 5%, which shows that the accelerometer can be used for measuring precisely acceleration in the two lateral directions. The accelerometer operates linearly in the range of investigated acceleration from 0 to 4g. The proposed accelerometer is expected for low-g applications.


1972 ◽  
Vol 68 (2_Supplb) ◽  
pp. S44-S73 ◽  
Author(s):  
Eugene F. Bernstein

ABSTRACT Among the critical factors in organ perfusion are (1) the mechanical components of the system, (2) the composition of the perfusate, and (3) the perfusing conditions. In this review, particular consideration is given to the pump, the oxygenator, and cannulas in such systems. Emphasis is placed upon the selection of pertinent equipment for the goals of a particular perfusion experiment, based upon the criteria of adequacy of the perfusion. Common problems in organ perfusion are summarized, and potential solutions to the perfusion problem, involving either biologic or mechanical extracorporeal systems, are suggested.


Sign in / Sign up

Export Citation Format

Share Document