scholarly journals Sound transmission through cylindrical shell structures excited by boundary layer pressure fluctuations

Author(s):  
Yvette Tang ◽  
Richard Silcox ◽  
Jay Robinson
2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Qunlin Zhang ◽  
Yijun Mao ◽  
Datong Qi

An analytical model is developed to investigate the vibro-acoustic response of a double-walled cylindrical shell with the inner wall perforated when excited by the external turbulent boundary layer (TBL) pressure fluctuations. The shell motion is governed by the Donnell’s thin shell theory, and the mean particle velocity model is employed to describe the boundary condition between the microperforated shell and fluid media. Numerical results indicate that the transmission loss (TL) for the configuration of microperforating the inner wall could be larger than that for the conventional solid double-walled cylindrical shell with and without the core of porous material over a wide frequency range. Comparison between TL results with excitations from the TBL and the acoustic diffuse field (ADF) shows that with the thought of microperforating the inner shell, to reduce the acoustical excitation will be of more importance than the flow excitation over the ring frequency for a quiet interior space. Parametric studies illustrate that the perforation ratio is the main factor affecting the sound insulation performance through the total reactance.


1967 ◽  
Vol 30 (2) ◽  
pp. 241-258 ◽  
Author(s):  
P. Bradshaw

Townsend's (1961) hypothesis that the turbulent motion in the inner region of a boundary layer consists of (i) an ‘active’ part which produces the shear stress τ and whose statistical properties are universal functions of τ and y, and (ii) an ‘inactive’ and effectively irrotational part determined by the turbulence in the outer layer, is supported in the present paper by measurements of frequency spectra in a strongly retarded boundary layer, in which the ‘inactive’ motion is particularly intense. The only noticeable effect of the inactive motion is an increased dissipation of kinetic energy into heat in the viscous sublayer, supplied by turbulent energy diffusion from the outer layer towards the surface. The required diffusion is of the right order of magnitude to explain the non-universal values of the triple products measured near the surface, which can therefore be reconciled with universality of the ‘active’ motion.Dimensional analysis shows that the contribution of the ‘active’ inner layer motion to the one-dimensional wave-number spectrum of the surface pressure fluctuations varies as τ2w/k1 up to a wave-number inversely proportional to the thickness of the viscous sublayer. This result is strongly supported by the recent measurements of Hodgson (1967), made with a much smaller ratio of microphone diameter to boundary-layer thickness than has been achieved previously. The disagreement of the result with most other measurements is attributed to inadequate transducer resolution in the other experiments.


Author(s):  
Frank J. Aldrich

A physics-based approach is employed and a new prediction tool is developed to predict the wavevector-frequency spectrum of the turbulent boundary layer wall pressure fluctuations for subsonic airfoils under the influence of adverse pressure gradients. The prediction tool uses an explicit relationship developed by D. M. Chase, which is based on a fit to zero pressure gradient data. The tool takes into account the boundary layer edge velocity distribution and geometry of the airfoil, including the blade chord and thickness. Comparison to experimental adverse pressure gradient data shows a need for an update to the modeling constants of the Chase model. To optimize the correlation between the predicted turbulent boundary layer wall pressure spectrum and the experimental data, an optimization code (iSIGHT) is employed. This optimization module is used to minimize the absolute value of the difference (in dB) between the predicted values and those measured across the analysis frequency range. An optimized set of modeling constants is derived that provides reasonable agreement with the measurements.


1960 ◽  
Vol 27 (2) ◽  
pp. 223-229 ◽  
Author(s):  
M. V. Morkovin

For the purposes of assessing the magnitude of flow disturbances which would affect conditions on a blunt nose of a body moving at supersonic speeds, the detached shock is approximated by a purely normal shock. The disturbances downstream of the shock are expressed in terms of the “free-stream” disturbances by considering sinusoidal fluctuations. Pressure fluctuations generated by interactions of entropy-temperature disturbances with the normal shock may be considerable at high Mach numbers, but their effect on the transition of a laminar boundary layer to a turbulent one is a matter of speculation. However, conjectures that reflections of such pressure waves between the body and the shock wave might lead to high resonant amplifications are definitely disproved.


Sign in / Sign up

Export Citation Format

Share Document