Suppression of fires and combustion instabilities using droplet injection

1998 ◽  
Author(s):  
K. Kailasanath ◽  
E. Chang ◽  
K. Prasad
Author(s):  
Pradip Xavier ◽  
Bruno Renou ◽  
Gilles Cabot ◽  
Mourad A. Boukhalfa ◽  
Michel Cazalens

This paper focuses on optimizing an innovative annular Lean Premixed staged burner, following the Trapped Vortex Combustor concept. The latter consists of a lean main flame stabilized by passing past a rich cavity pilot flame. Unfortunately, this configuration is highly sensitive to combustion instabilities and the flame is not well stabilized. This work consists of adjusting aerodynamic variables, chemical parameters and burner geometry to reach a “low-NOx” operation while reducing other pollutants and getting a stable flame. Results show that stability is reached when mass transfers between main and cavity zones are reduced. Then, the main bulk velocity is increased to reduce the cavity thermal expansion, due to the hot gas expansion. In addition, the cavity flow rate is reduced to prevent from penetrating and disturbing the main flow. Re-arranging injections in the cavity also avoid local unsteady equivalence ratios, which creates an unsteady heat release and combustion with pulses. Regarding NOx, a leaner main flame combined with a sufficiently rich cavity mixture creates local stoichiometric zones at the interface between the cavity and the main zone. The latter point is found to be a good anchoring mechanism. Compared with the original configuration, a stable point of operation is found: acoustic energy is reduced by an order of 100, NOx level is less than 0.4 g/kgfuel, CO is cut by 93% with no more Unburned Hydro-Carbons.


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
S. M. Hosseinalipour ◽  
E. Rahmani ◽  
A. Fattahi

Abstract Entropy wave, as the convecting hot spot, is one of the sources of combustion instabilities, which is less explored through the literature. Convecting in a highly turbulent flow of a combustor, entropy waves may experience some levels of dissipation and deformation. In spite of some earlier investigations in the zero acceleration flow, the extent of the wave decay has not been clear yet. Further, there exist no results upon the wave decay in non-zero accelerated flows. This is of crucial importance, as the wave passes through the end nozzle of the combustor or gas turbine stages. The current experiment, therefore, compares the wave decay in both flow of constant and variable bulk velocity, meaning, respectively, a uniform pipe and a convergent nozzle. The comparison will aid the theoretical models to reduce complexity by simplifying the relations of non-zero acceleration flow to those of no acceleration, as followed by the earlier effective-length method. Reynolds number and inlet turbulence intensity are considered as the governing hydrodynamic parameters for both investigated flows. The entropy wave is generated by an electrical heater module and detected using fast-response thermocouples. The results show that the entropy wave variation is point-wise and frequency-dependent. The accelerated flow of the nozzle is generally found to be more dissipative in comparison with the zero acceleration flow.


Sign in / Sign up

Export Citation Format

Share Document