Experimental investigation of acoustic characteristics of broadband noise sources with the Boeing 18-inch fan rig

Author(s):  
P. Joppa
Acoustics ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 92-116 ◽  
Author(s):  
Stéphane Moreau

In future Ultra-High By-Pass Ratio turboengines, the turbomachinery noise (fan and turbine stages mainly) is expected to increase significantly. A review of analytical models and numerical methods to yield both tonal and broadband contributions of such noise sources is presented. The former rely on hybrid methods coupling gust response over very thin flat plates of finite chord length, either isolated or in cascade, and acoustic analogies in free-field and in a duct. The latter yields tonal noise with unsteady Reynolds-Averaged Navier–Stokes (u-RANS) simulations, and broadband noise with Large Eddy Simulations (LES). The analytical models are shown to provide good and fast first sound estimates at pre-design stages, and to easily separate the different noise sources. The u-RANS simulations are now able to give accurate estimates of tonal noise of the most complex asymmetric, heterogeneous fan-Outlet Guiding Vane (OGV) configurations. Wall-modeled LES on rescaled stage configurations have now been achieved on all components: a low-pressure compressor stage, a transonic high-pressure turbine stage and a fan-OGV configuration with good overall sound power level predictions for the latter. In this case, hybrid Lattice–Boltzmann/very large-eddy simulations also appear to be an excellent alternative to yield both contributions accurately at once.


2013 ◽  
Vol 27 (11) ◽  
pp. 3287-3297 ◽  
Author(s):  
Kyoung-Ku Ha ◽  
Tae-Bin Jeong ◽  
Shin-Hyoung Kang ◽  
Hyoung-Jin Kim ◽  
Kwang-Min Won ◽  
...  

Author(s):  
Niccolò Baldanzini ◽  
Federico Beraldo ◽  
Monica Carfagni

Abstract An experimental investigation was undertaken to determine the causes of noise emission scatter in hosiery machines. Following the experimental measurement of the sound power levels, the hosiery machine’s mechanical system was assembled and tested with components of various sizes. The results indicated that the source of the noise emissions was a bearing’s outer race. Analysis of the outer race’s roundness profile in relation to vibrations provided accurate predictions of machine behavior. On the basis of a correlation between noise and vibrations, a practical method of online monitoring was developed.


Acoustics ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 617-649
Author(s):  
Sébastien Guérin ◽  
Carolin Kissner ◽  
Pascal Seeler ◽  
Ricardo Blázquez ◽  
Pedro Carrasco Laraña ◽  
...  

A benchmark dedicated to RANS-informed analytical methods for the prediction of turbofan rotor–stator interaction broadband noise was organised within the framework of the European project TurboNoiseBB. The second part of this benchmark focuses on the impact of the acoustic models. Twelve different approaches implemented in seven different acoustic solvers are compared. Some of the methods resort to the acoustic analogy, while some use a direct approach bypassing the calculation of a source term. Due to differing application objectives, the studied methods vary in terms of complexity to represent the turbulence, to calculate the acoustic response of the stator and to model the boundary and flow conditions for the generation and propagation of the acoustic waves. This diversity of approaches constitutes the unique quality of this work. The overall agreement of the predicted sound power spectra is satisfactory. While the comparison between the models show significant deviations at low frequency, the power levels vary within an interval of ±3 dB at mid and high frequencies. The trends predicted by increasing the rotor speed are similar for almost all models. However, most predicted levels are some decibels lower than the experimental results. This comparison is not completely fair—particularly at low frequency—because of the presence of noise sources in the experimental results, which were not considered in the simulations.


2018 ◽  
Vol 8 (11) ◽  
pp. 2291 ◽  
Author(s):  
Kenta Iwai ◽  
Satoru Hase ◽  
Yoshinobu Kajikawa

In this paper, we propose a multichannel active noise control (ANC) system with an optimal reference microphone selector based on the time difference of arrival (TDOA). A multichannel feedforward ANC system using upstream reference signals can reduce various noises such as broadband noise by arranging reference microphones close to noise sources. However, the noise reduction performance of an ANC system degrades when the noise environment changes, such as the arrival direction. This is because some reference microphones do not satisfy the causality constraint that the unwanted noise propagates to the control point faster than the anti-noise used to cancel the unwanted noise. To solve this problem, we propose a multichannel ANC system with an optimal reference microphone selector. This selector chooses the reference microphones that satisfy the causality constraint based on the TDOA. Some experimental results demonstrate that the proposed system can choose the optimal reference microphones and effectively reduce unwanted acoustic noise.


Author(s):  
Benjamin Pardowitz ◽  
Ulf Tapken ◽  
Karsten Knobloch ◽  
Friedrich Bake ◽  
Eric Bouty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document