Rotorcraft Lateral-Directional Oscillations: The Anatomy of a Nuisance Mode

Author(s):  
Dheeraj Agarwal ◽  
Linghai Lu ◽  
Gareth D. Padfield ◽  
Mark D. White ◽  
Neil Cameron

High-fidelity rotorcraft flight simulation relies on the availability of a quality flight model that further demands a good level of understanding of the complexities arising from aerodynamic couplings and interference effects. One such example is the difficulty in the prediction of the characteristics of the rotorcraft lateral-directional oscillation (LDO) mode in simulation. Achieving an acceptable level of the damping of this mode is a design challenge requiring simulation models with sufficient fidelity that reveal sources of destabilizing effects. This paper is focused on using System Identification to highlight such fidelity issues using Liverpool's FLIGHTLAB Bell 412 simulation model and in-flight LDO measurements from the bare airframe National Research Council's (Canada) Advanced Systems Research Aircraft. The simulation model was renovated to improve the fidelity of the model. The results show a close match between the identified models and flight test for the LDO mode frequency and damping. Comparison of identified stability and control derivatives with those predicted by the simulation model highlight areas of good and poor fidelity.

2018 ◽  
Vol 58 (2) ◽  
pp. 77
Author(s):  
Rahman Mohammadi Farhadi ◽  
Vyacheslav Kortunov ◽  
Andrii Molchanov ◽  
Tatiana Solianyk

Stability and control derivatives of Skywalker X8 flying wing from flight-test data are estimated by using the combination of the output error and least square methods in the presence of the wind. Data is collected from closed loop flight tests with a proportional-integral-derivative (PID) controller that caused data co-linearity problems for the identification of the unmanned aerial vehicle (UAV) dynamic system. The data co-linearity problem is solved with a biased estimation via priori information, parameter fixing and constrained optimization, which uses analytical values of aerodynamic parameters, the level of the identifiability and sensitivity of the measurement vector to the parameters. Estimated aerodynamic parameters are compared with the theoretically calculated coefficients of the UAV, moreover, the dynamic model is validated with additional flight-test data and small covariances of the estimated parameters.


Author(s):  
S S Houston

This paper presents an analysis of test data recorded during flight trials of a gyroplane. This class of rotary-wing aircraft has found limited application in areas other than sport or recreational flying. However, the accident rate is such that a study of the configuration's stability and control characteristics is timely, and in addition substantive data are required for a new airworthiness and design standard that is under development. The paper complements previous work on the longitudinal degrees of freedom and, as a consequence, serves to consolidate the understanding of gyroplane stability and control. The identified derivatives are related to specific aspects of the layout of the gyroplane, and hence the influence of design on the static and dynamic behaviour is quantified. It is concluded that robust estimates of the lateral and directional stability and control derivatives have been identified. This analysis has focused on ‘high-speed’ flight, and the identified derivatives highlight benign and ‘conventional’ characteristics in this part of the flight envelope.


Aviation ◽  
2004 ◽  
Vol 8 (1) ◽  
pp. 13-17
Author(s):  
Marcin Szender

A flight test research program employing a remotely piloted vehicle (RPV) within high angle of attack range has commenced at the Faculty of Power and Aeronautical Engineering of Warsaw University of Technology, Poland. The initial flights of the scaled model of the “Bielik” aircraft were made with the aim to correlate RPV and full‐scale flight stall and departure and spin controllability considering the effects of dynamic scaling laws and Reynolds number. The remotely controlled research aircraft, which is powered by a turbine jet engine and equipped with a flight data recording system, proved to be good source of stability and control data at relatively low cost and without additional risk. The research remotely piloted vehicle and results of its initial flights are presented in this paper.


Author(s):  
Mathias Stefan Roeser ◽  
Nicolas Fezans

AbstractA flight test campaign for system identification is a costly and time-consuming task. Models derived from wind tunnel experiments and CFD calculations must be validated and/or updated with flight data to match the real aircraft stability and control characteristics. Classical maneuvers for system identification are mostly one-surface-at-a-time inputs and need to be performed several times at each flight condition. Various methods for defining very rich multi-axis maneuvers, for instance based on multisine/sum of sines signals, already exist. A new design method based on the wavelet transform allowing the definition of multi-axis inputs in the time-frequency domain has been developed. The compact representation chosen allows the user to define fairly complex maneuvers with very few parameters. This method is demonstrated using simulated flight test data from a high-quality Airbus A320 dynamic model. System identification is then performed with this data, and the results show that aerodynamic parameters can still be accurately estimated from these fairly simple multi-axis maneuvers.


1964 ◽  
Vol 68 (646) ◽  
pp. 645-652 ◽  
Author(s):  
D. H. Perry ◽  
J. M. Naish

SummarySome of the uses of ground based flight simulation as a research tool to aid the design of new aircraft and their equipment are described. The function of the simulator is to provide a method for investigating humon flying tasks in the laboratory, so that the relationship between the pilot's capabilities and the equipment's characteristics can be systematically studied. The paper is presented in two parts describing recent work on two research simulators at the RAE.Part I deals with the use of simulation for studying aircraft stability and control characteristics. The equipment used at RAE for this work is described, with particular emphasis on methods of presenting to the pilot a simulated view of the outside world, and for reproducing some of the motion cues which he experiences in flight. Experimental evidence of the importance of these simulation cues when making aircraft control assessments is also presented. Several examples of simulation studies into the control of conventional and VTOL aircraft are given, to illustrate the type of research problems in this field which may be tackled and the techniques involved in solving them.


Sign in / Sign up

Export Citation Format

Share Document