Optimization of trusses with geometrically nonlinear response using a displacement based approach

Author(s):  
Samy Missoum ◽  
Zafer Gurdal
2019 ◽  
Vol 24 (2) ◽  
pp. 56 ◽  
Author(s):  
Oliver Kunc ◽  
Felix Fritzen

The computational homogenization of hyperelastic solids in the geometrically nonlinear context has yet to be treated with sufficient efficiency in order to allow for real-world applications in true multiscale settings. This problem is addressed by a problem-specific surrogate model founded on a reduced basis approximation of the deformation gradient on the microscale. The setup phase is based upon a snapshot POD on deformation gradient fluctuations, in contrast to the widespread displacement-based approach. In order to reduce the computational offline costs, the space of relevant macroscopic stretch tensors is sampled efficiently by employing the Hencky strain. Numerical results show speed-up factors in the order of 5–100 and significantly improved robustness while retaining good accuracy. An open-source demonstrator tool with 50 lines of code emphasizes the simplicity and efficiency of the method.


Author(s):  
K. Liu ◽  
G. H. Paulino

Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on ‘bar-and-hinge’ models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.


1988 ◽  
Vol 92 (919) ◽  
pp. 356-364 ◽  
Author(s):  
H. H. Al-Qarra

Summary A displacement-based versatile and effective finite element analysis of sandwich panels is presented. The analysis is applicable to both small and large deflections. Allowance for the local bending stiffness of the faces is made. The procedure described is readily adapted to arbitrary laminated beams and plates. Selected example problems are given to illustrate the applicability of the formulation.


Sign in / Sign up

Export Citation Format

Share Document