Damage mechanisms in angle-ply composite laminates under in-plane tensile loading

Author(s):  
C. Soutis ◽  
M. Kashtalyan
2021 ◽  
Vol 288 ◽  
pp. 123088
Author(s):  
Muhammad Zakir Sheikh ◽  
Muhammad Atif ◽  
Yulong Li ◽  
Fenghua Zhou ◽  
Muhammad Aamir Raza ◽  
...  

Author(s):  
Bing Zhang ◽  
Luiz F. Kawashita ◽  
Mike I. Jones ◽  
James K. Lander ◽  
Stephen R. Hallett

1995 ◽  
Vol 4 (4) ◽  
pp. 096369359500400 ◽  
Author(s):  
Jang-Kyo Kim ◽  
Joo Hyuk Park

The stress field arising in tensile loading of the Iosipescu shear test is analyzed by means of finite element method. In a parametric study on a composite laminates-adhesive joint, the tensile loading method is shown more effective in creating a pure shear stress field with negligible normal stresses in the notched area than the conventional compressive loading method, although the maximum shear stress is marginally higher for the former method than the latter.


2003 ◽  
Vol 34 (5) ◽  
pp. 459-471 ◽  
Author(s):  
Th. Lorriot ◽  
G. Marion ◽  
R. Harry ◽  
H. Wargnier

Author(s):  
Shawn P. Reese ◽  
Jeffrey A. Weiss

In tendons and ligaments, collagen is organized hierarchically into nanoscale fibrils, microscale fibers and mesoscale fascicles. Force transfer across scales is complex and poorly understood, and macroscale strains are not representative of the microscale strains [1]. Since innervation, the vasculature, damage mechanisms and mechanotransduction occur at the microscale, understanding such multiscale interactions is of high importance. In this study, a physical model was used in combination with a computational model to isolate and study the mechanisms of force transfer between scales. The objectives of this study were to develop a collagen based tendon surrogate for use as a physical model and subject it to tensile loading, and to create and validate a 3D micromechanical finite element (FE) model of the surrogate.


Sign in / Sign up

Export Citation Format

Share Document