Experimental Investigation of Flame Stability of Enclosed Laminar Jet Diffusion Flame

Author(s):  
Brandon Ryan ◽  
Yong Zhang ◽  
Lea Chen
2019 ◽  
Vol 13 (3) ◽  
pp. 5278-5293
Author(s):  
Vipul Patel ◽  
Rupesh Shah

The present research aims to analyse diffusion flame in a tube type burner with Liquefied petroleum gas (LPG) as a fuel. An experimental investigation is performed to study flame appearance, flame stability, Soot free length fraction (SFLF) and CO emission of LPG diffusion flame. Effects of varying air and fuel velocities are analysed to understand the physical process involved in combustion. SFLF is measured to estimate the reduction of soot. Stability limits of the diffusion flame are characterized by the blowoff velocity. Emission characteristic in terms of CO level is measured at different equivalence ratios. Experimental results show that the air and fuel velocity strongly influences the appearance of LPG diffusion flame. At a constant fuel velocity, blue zone increases and the luminous zone decreases with the increase in air velocity. It is observed that the SFLF increases with increasing air velocity at a constant fuel velocity. It is observed that the blowoff velocity of the diffusion flame increases as fuel velocity increases. Comparison of emission for flame with and without swirl indicates that swirl results in low emission of CO and higher flame stability. Swirler with 45° vanes achieved the lowest CO emission of 30 ppm at Φ = 1.3.


1993 ◽  
Vol 115 (2) ◽  
pp. 142-147 ◽  
Author(s):  
I. Wierzba ◽  
K. Kar ◽  
G. A. Karim

The blowout limits of a methane diffusion flame in a co-flowing air-fuel or air-diluent stream were determined for a range of surrounding co-flow stream velocities, both laminar and turbulent, up to ~ 1.50 m/s. Methane, ethylene, propane and hydrogen were used as the fuels in the surrounding co-flow stream while nitrogen and carbon dioxide were used as diluents. The experimental results show that the velocity of the surrounding stream affects the blowout phenomena significantly. An increase in the stream velocity has a detrimental effect on the blowout limits at very low velocities up to 0.30 m/s (essentially laminar flow) and at velocities higher than 1.50 m/s (turbulent flow). The addition of a fuel to the air stream in most cases enhances the blowout limit of a methane diffusion flame. However, different trends in the variation of the blowout limits with the surrounding fuel concentration were observed, depending on the type of fuel used and on whether the surrounding coflow stream was laminar or turbulent. The addition of nitrogen or carbon dioxide to the air stream results in decreasing the blowout limits. The effect is more severe at the higher velocities.


Sign in / Sign up

Export Citation Format

Share Document