Numerical and Experimental Studies of a Film Cooled Pulsed Detonation Tube

Author(s):  
Kumud Ajmani ◽  
Kevin Breisacher ◽  
Louis Ghosn ◽  
Dennis Fox
2013 ◽  
Vol 25 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Hua Qiu ◽  
Cha Xiong ◽  
Chuan-jun Yan ◽  
Long-xi Zheng

Author(s):  
Hua Qiu ◽  
Zheng Su ◽  
Cha Xiong

The spiral tube structure is an effective method to shorten the axial length of the pulse detonation chamber. In this article, spiral pulsed detonation tube with two kinds of spiral configuration was experimentally investigated. Liquid gasoline and air were used as fuel and oxidant, respectively, and equivalence ratios were controlled to about 1.0. Based on the transient pressure along the tube, the propagation characteristics of the pressure waves in the multi-cycle spiral pulsed detonation tubes, such as pressure peaks, wave velocities and propagation process, were analyzed. Results showed that propagation of double compression waves was the common feature during the process of deflagration to detonation transition in the presented spiral tubes, and the onset of detonation was initiated by a local explosion in the second compression wave. The deflagration to detonation transition characteristics with detonation initiation and combustion characteristics without initiation in the spiral sections were both related to the dimensionless distance. Propagation characteristics of the pressure waves were influenced by the use of different spiral configuration. And some interesting phenomena were also found.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
K. M. Pandey ◽  
Pinku Debnath

Pulse detonation engines (PDEs) are new exciting propulsion technologies for future propulsion applications. The operating cycles of PDE consist of fuel-air mixture, combustion, blowdown, and purging. The combustion process in pulse detonation engine is the most important phenomenon as it produces reliable and repeatable detonation waves. The detonation wave initiation in detonation tube in practical system is a combination of multistage combustion phenomena. Detonation combustion causes rapid burning of fuel-air mixture, which is a thousand times faster than deflagration mode of combustion process. PDE utilizes repetitive detonation wave to produce propulsion thrust. In the present paper, detailed review of various experimental studies and computational analysis addressing the detonation mode of combustion in pulse detonation engines are discussed. The effect of different parameters on the improvement of propulsion performance of pulse detonation engine has been presented in detail in this research paper. It is observed that the design of detonation wave flow path in detonation tube, ejectors at exit section of detonation tube, and operating parameters such as Mach numbers are mainly responsible for improving the propulsion performance of PDE. In the present review work, further scope of research in this area has also been suggested.


Author(s):  
A. E. Zangiev ◽  
◽  
V. S. Ivanov ◽  
S. M. Frolov ◽  
◽  
...  

The air-breathing pulsed detonation engine (PDE) for an aircraft designed for a subsonic flight when operating on the products of pyrolysis of polypropylene was developed using the analytical estimates and parametric multivariant threedimensional (3D) calculations. The PDE consists of an air intake with a check valve, a fuel supply system, a prechamber-jet ignition system, and a combustion chamber with an attached detonation tube. Parametric 3D calculations allowed choosing the best length of the PDE combustor, which provides an efficient mixing of air with fuel, the best way to ignite the mixture (prechamber-jet ignition), the best location of the prechamber, the minimum length of the section with turbulizing obstacles for flame acceleration and deflagration-to-detonation transition (DDT), and the best degree of filling the detonation tube with the fuel mixture to achieve the maximum completeness of combustion.


2016 ◽  
Vol 34 (4) ◽  
pp. 387-393
Author(s):  
Cha Xiong ◽  
Hua Qiu ◽  
Qinwei Lu

Abstract A branching tube is available to deliver sufficient energy to directly initiate a detonation wave. But sustaining the detonation wave through a branching tube is a challenge. In this study, a preliminary exploration about a branching pulsed detonation engine with a gas-liquid mixture was carried out to evaluate filling conditions on detonation initiation. Two detonation tubes were connected by three different schemes, such as Tail-Tail, Tail-Mid, and Tail-Head. Experimental results showed only end-head connected tubes can be ignited by the branching tube, which is quite different from the results using gas fuels or pre-evaporated liquid fuel. Liquid fuel distribution is crucial for successful detonation traveling through the branching tube.


Sign in / Sign up

Export Citation Format

Share Document