A Methodology for Multiscale Computational Design of Continuous Fiber SiC-Si3N4 Ceramic Composites Based on the Variable Fidelity Model Management Framework

Author(s):  
Gilberto Rodríguez ◽  
John Renaud ◽  
Vikas Tomar
Author(s):  
Gilberto Meji´a Rodri´guez ◽  
John E. Renaud ◽  
Vikas Tomar

Research applications involving design tool development for multiple phase material design are at an early stage of development. The computational requirements of advanced numerical tools for simulating material behavior such as the finite element method (FEM) and the molecular dynamics method (MD) can prohibit direct integration of these tools in a design optimization procedure where multiple iterations are required. The complexity of multiphase material behavior at multiple scales restricts the development of a comprehensive meta-model that can be used to replace the multiscale analysis. One, therefore, requires a design approach that can incorporate multiple simulations (multi-physics) of varying fidelity such as FEM and MD in an iterative model management framework that can significantly reduce design cycle times. In this research a material design tool based on a variable fidelity model management framework is presented. In the variable fidelity material design tool, complex “high fidelity” FEM analyses are performed only to guide the analytic “low-fidelity” model toward the optimal material design. The tool is applied to obtain the optimal distribution of a second phase, consisting of silicon carbide (SiC) fibers, in a silicon-nitride (Si3N4) matrix to obtain continuous fiber SiC-Si3N4 ceramic composites (CFCCs) with optimal fracture toughness. Using the variable fidelity material design tool in application to one test problem, a reduction in design cycle time around 80 percent is achieved as compared to using a conventional design optimization approach that exclusively calls the high fidelity FEM.


2008 ◽  
Vol 130 (9) ◽  
Author(s):  
Gilberto Mejía-Rodríguez ◽  
John E. Renaud ◽  
Vikas Tomar

Research applications involving design tool development for multi phase material design are at an early stage of development. The computational requirements of advanced numerical tools for simulating material behavior such as the finite element method (FEM) and the molecular dynamics (MD) method can prohibit direct integration of these tools in a design optimization procedure where multiple iterations are required. One, therefore, requires a design approach that can incorporate multiple simulations (multiphysics) of varying fidelity such as FEM and MD in an iterative model management framework that can significantly reduce design cycle times. In this research a material design tool based on a variable fidelity model management framework is presented. In the variable fidelity material design tool, complex “high-fidelity” FEM analyses are performed only to guide the analytic “low-fidelity” model toward the optimal material design. The tool is applied to obtain the optimal distribution of a second phase, consisting of silicon carbide (SiC) fibers, in a silicon-nitride (Si3N4) matrix to obtain continuous fiber SiC–Si3N4 ceramic composites with optimal fracture toughness. Using the variable fidelity material design tool in application to two test problems, a reduction in design cycle times of between 40% and 80% is achieved as compared to using a conventional design optimization approach that exclusively calls the high-fidelity FEM. The optimal design obtained using the variable fidelity approach is the same as that obtained using the conventional procedure. The variable fidelity material design tool is extensible to multiscale multiphase material design by using MD based material performance analyses as the high-fidelity analyses in order to guide low-fidelity continuum level numerical tools such as the FEM or finite-difference method with significant savings in the computational time.


Author(s):  
Matthew A. Williams ◽  
Andrew G. Alleyne

In the early stages of control system development, designers often require multiple iterations for purposes of validating control designs in simulation. This has the potential to make high fidelity models undesirable due to increased computational complexity and time required for simulation. As a solution, lower fidelity or simplified models are used for initial designs before controllers are tested on higher fidelity models. In the event that unmodeled dynamics cause the controller to fail when applied on a higher fidelity model, an iterative approach involving designing and validating a controller’s performance may be required. In this paper, a switched-fidelity modeling formulation for closed loop dynamical systems is proposed to reduce computational effort while maintaining elevated accuracy levels of system outputs and control inputs. The effects on computational effort and accuracy are investigated by applying the formulation to a traditional vapor compression system with high and low fidelity models of the evaporator and condenser. This sample case showed the ability of the switched fidelity framework to closely match the outputs and inputs of the high fidelity model while decreasing computational cost by 32% from the high fidelity model. For contrast, the low fidelity model decreases computational cost by 48% relative to the high fidelity model.


Sign in / Sign up

Export Citation Format

Share Document