Linearized Navier-Stokes Analysis for Rotor-Stator Interaction Tone Noise Prediction

Author(s):  
Hsuan-nien Chen ◽  
Anupam Sharma ◽  
Chingwei Shieh ◽  
Simon Richards
Author(s):  
Ahmet Dursun Alkan ◽  
Onur Usta ◽  
Alpay Acar ◽  
Elis Atasayan

Luxury high-speed boats are increasingly being used for entertainment purposes. However, not only humans, but also animals are negatively affected by high-speed boats, and time is running out fast for people to do something about it. This study presents a review of current negative effects of high-speed boats to the environment. In this study, the flow around a benchmark planing Fridsma boat is simulated by CFD and resistance values for different non-dimensional Froude number (Fn) conditions are validated from the experimental results obtained from the literature. Using the same CFD methodology, a catamaran model in which the towing tank test results are available, is simulated for different Fn conditions and resistance values are predicted. In the CFD analysis, unsteady flow around the Fridsma hull model and catamaran model is simulated using overset meshing technique and turbulence is modeled by Reynolds Averaged Navier Stokes (RANS) with SST (Menter) k-omega turbulence model. Resistance values are compared with the experimental data and required propulsion powers are estimated for different Fn conditions. Then, total resistance of the catamaran for full-scale vessel is calculated using an extrapolation method and required propulsion power predictions are conducted. Noise prediction, corresponding to the required propulsion power are presented. In particular, the change of noise level and harmful gases released into the environment, when the speed of the vessel increases are examined and discussed. Consequently, it is believed that this study would lay an important foundation for the widespread investigation for the negative effects of the high-speed boats in the future.


Author(s):  
Ve´ronique Penin ◽  
Pascale Kulisa ◽  
Franc¸ois Bario

During the last few decades, the size and weight of turbo-machinery have been continuously reduced. However, by decreasing the distance between rows, rotor-stator interaction is strengthened. Two interactions now have the same magnitude: wake interaction and potential effect. Studying this effect is essential to understand rotor-stator interactions. Indeed, this phenomenon influences the whole flow, including the boundary layer of the upstream and downstream blades, ergo the stability of the flow and the efficiency of the machine. A large scale turbine cascade followed by a specially designed rotating cylinder system is used. Synchronised velocity LDA measurements on the vane profile show the flow and boundary layer behavior due to the moving bars. To help the general understanding and to corroborate our experimental results, numerical investigations are carried out with an unsteady three dimensional Navier-Stokes code. Moreover, the numerical study informs about the potential disturbance to the whole flow of the cascade.


Author(s):  
M. B. Graf ◽  
E. M. Greitzer ◽  
F. E. Marble ◽  
O. P. Sharma

Effects of stator pressure field on upstream rotor performance in a high pressure compressor stage have been assessed using three-dimensional steady and time-accurate Reynolds-averaged Navier-Stokes computations. Emphasis was placed on: (1) determining the dominant features of the flow arising from interaction of the rotor with the stator pressure field, and (2) quantifying the overall effects on time averaged loss, blockage, and pressure rise. The time averaged results showed a 20 to 40% increase in overall rotor loss and a 10 to 50% decrease in tip clearance loss compared to an isolated rotor. The differences were dependent on the operating point and increased as the stage pressure rise, and amplitude of the unsteady back pressure variations, was increased. Motions of the tip leakage vortex on the order of the blade pitch were observed at the rotor exit in all the unsteady flow simulations; these were associated with enhanced mixing in the region. The period of the motion scaled with rotor flow-through time rather than stator passing. Three steady flow approximations for the rotor-stator interaction were assessed with reference to the unsteady computations: an axisymmetric representation of the stator pressure field, an inter-blade row averaging plane method, and a technique incorporating deterministic stresses and bodyforces associated with stator flow field. Differences between steady and unsteady predictions of overall rotor loss, tip region loss, and endwall blockage ranged from 5 to 50% of the time average, but the steady flow models gave overall rotor pressure rise and flow capacity within 5% of the time averaged values.


Author(s):  
Lu-Lu Zheng ◽  
Hua-Shu Dou ◽  
Wei Jiang ◽  
Xiaoping Chen ◽  
Zuchao Zhu ◽  
...  

AbstractNumerical simulation is performed for the three-dimensional turbulent flow field in a centrifugal pump by solving the Reynolds-averaged Navier-Stokes equations and the RNG k-epsilon turbulent model. The finite volume method and the SIMPLE algorithm are employed for the solution of the system. All the parameters in the centrifugal pump at different blade angular positions are obtained by simulation. The flow structure is analyzed and the distributions of the energy gradient function


Author(s):  
Manuel A. Burgos ◽  
Jesus Contreras ◽  
Roque Corral

A method to address the rotor/stator interaction problem on an edge-based Reynolds Averaged Navier-Stokes solver is presented. The implementation of the phase-lagged boundary conditions and a new original conservative discretization of the sliding plane in unstructured grids is discussed in detail. Results of the present method are compared with the experimental results obtained at NLR for a subsonic fan.


Sign in / Sign up

Export Citation Format

Share Document