Hybrid Reynolds-Averaged and Large-Eddy Simulation of Supersonic Fuel Injection Scaling

Author(s):  
Stephanie Jensen ◽  
David Peterson ◽  
Graham Candler
2011 ◽  
Vol 27 (4) ◽  
pp. 519-530 ◽  
Author(s):  
Lei Zhou ◽  
Mao-Zhao Xie ◽  
Ming Jia ◽  
Jun-Rui Shi

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 122735
Author(s):  
Jiun Cai Ong ◽  
Min Zhang ◽  
Morten Skov Jensen ◽  
Jens Honoré Walther

2018 ◽  
Vol 20 (1) ◽  
pp. 58-68 ◽  
Author(s):  
Matthias Ihme ◽  
Peter C Ma ◽  
Luis Bravo

Large eddy simulations of transcritical injection and auto-ignition of n-dodecane in a combustion chamber are performed. To this end, a diffuse-interface method is employed that solves the compressible multi-species conservation equations, and a cubic state equation together with real-fluid transport properties is employed to describe the transcritical fluid state. The reaction chemistry is represented by a finite-rate chemistry model involving a 33-species reduced mechanism for n-dodecane. Compared to commonly employed two-phase approaches, the method presented in this work does not introduce tunable parameters for spray-breakup. Large eddy simulation calculations are performed by considering the Spray A single-hole injector at non-reacting and reacting conditions at a pressure of 60 bar and temperatures between 800 and 1200 K. Quantitative comparisons with measurements for liquid and vapor penetration lengths are performed for non-reacting conditions, and sensitivity to threshold values on mixture fraction are examined. The analysis of reacting flow simulations focuses on comparisons of the instantaneous temperature and species fields for OH and CH2O at 800 and 900 K, respectively. Quantitative comparisons with measurements for ignition delay and lift-off heights as a function of ambient temperature are performed. To examine the transient ignition phase, comparisons of radially integrated OH profiles obtained from the simulations with reported measurements for OH* are performed, showing good agreement. These results show that the large eddy simulation modeling framework adequately reproduces the corresponding ignition processes, which are relevant to realistic diesel-fuel injection systems.


2021 ◽  
Author(s):  
Ratnak Sok ◽  
Beini Zhou ◽  
Jin Kusaka

Abstract Gasoline direct injection (GDI) is a promising solution to increase engine thermal efficiency and reduce exhaust gas emissions. The GDI operation requires an understanding of fuel penetration and droplet size, which can be investigated numerically. In the numerical simulation, primary and secondary breakup phenomena are studied by the Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) wave breakup models. The models were initially developed for diesel fuel injection, and in the present work, the models are extended to the GDI application combined using large-eddy simulation (LES). The simulation is conducted using the KIVA4 code. Measured data of experimental spray penetration and Mie-scattering image comparisons are carried out under non-reactive conditions at an ambient temperature of 613K and a density of 4.84 kg/m3. The spray penetration and structures using LES are compared with traditional Reynolds-Averaged Navier-Stokes (RANS). Grid size effects in the simulation using LES and RANS models are also investigated to find a reasonable cell size for future reactive gasoline spray/combustion studies. The fuel spray penetration and droplet size are dependent on specific parameters. Parametric studies on the effects of adjustable constants of the KH-RT models, such as time constants, size constants, and breakup length constant, are discussed. Liquid penetrations from the RANS turbulence model are similar to that of the LES turbulence model’s prediction. However, the RANS model is not able to capture the spray structure well.


Sign in / Sign up

Export Citation Format

Share Document