scholarly journals Phase Change Material for Temperature Control of Loop Heat Pipe Compensation Chamber

Author(s):  
Michael Choi
Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5343
Author(s):  
Miroslava Kavgic ◽  
Yaser Abdellatef

Phase change material (PCM)-enhanced building envelopes can control indoor temperatures and save energy. However, PCM needs to undergo a phase change transition from solid to liquid and back to be fully effective. Furthermore, most previous research integrated PCM with high embodied energy materials. This study aims to advance the existing research on integrating PCM into carbon-negative wall assemblies composed of hempcrete and applying temperature control strategies to improve wall systems’ performance while considering the hysteresis phenomenon. Four hempcrete and hempcrete-PCM (HPCM) wall design configurations were simulated and compared under different control strategies designed to reduce energy demand while enhancing the phase change transition of the microencapsulated PCM. The HPCM wall types outperformed the hempcrete wall assembly through heating (~3–7%) and cooling (~7.8–20.7%) energy savings. HPCM walls also maintained higher wall surface temperatures during the coldest days, lower during the warmest days, and within a tighter range than hempcrete assembly, thus improving the thermal comfort. However, the results also show that the optimal performance of thermal energy storage materials requires temperature controls that facilitate their charge and discharge. Hence, applied control strategies reduced heating and cooling energy demand in the range of ~4.4–21.5% and ~14.5–55%, respectively.


2020 ◽  
Vol 21 ◽  
pp. 100655 ◽  
Author(s):  
Nandy Putra ◽  
Adjie Fahrizal Sandi ◽  
Bambang Ariantara ◽  
Nasruddin Abdullah ◽  
Teuku Meurah Indra Mahlia

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Wukchul Joung ◽  
Joohyun Lee

Recently, a novel temperature control technique utilizing the unique thermohydraulic operating principles of the pressure-controlled loop heat pipes (PCLHPs) was proposed and proved its effectiveness, by which a faster and more stable temperature control was possible by means of the pressure control. However, due to its recent emergence, the proposed hydraulic temperature control technique has not been fully characterized in terms of the various operating parameters including the sink temperature. In this work, the effect of the sink temperature on the loop heat pipe (LHP)-based hydraulic temperature control was investigated to improve the stability of the proposed technique. Start-up characteristics and transient responses of the operating temperatures to different pressure steps and sink temperatures were examined. From the test results, it was found that there was a minimum sink temperature, which ensured a steady-state operation after the start-up and a stable hydraulic temperature control with the increasing pressure steps, due to the unstable balance between the heat leak and the liquid subcooling in the compensation chamber at low sink temperatures. In addition, the range of the stable hydraulic temperature control was extended with the increasing coolant temperature due to the decreased heat leak, which resulted in the increased pressure difference between the evaporator and the compensation chamber. Therefore, it was found and suggested that for a stable hydraulic temperature control in an extended range, it was necessary to operate the PCLHP at higher sink temperatures than the low limit.


Sign in / Sign up

Export Citation Format

Share Document