Data reduction from time-resolved tomographic PIV for unsteady pressure evaluation

Author(s):  
Fulvio Scarano
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Abhik Datta ◽  
Kian Fong Ng ◽  
Deepan Balakrishnan ◽  
Melissa Ding ◽  
See Wee Chee ◽  
...  

AbstractFast, direct electron detectors have significantly improved the spatio-temporal resolution of electron microscopy movies. Preserving both spatial and temporal resolution in extended observations, however, requires storing prohibitively large amounts of data. Here, we describe an efficient and flexible data reduction and compression scheme (ReCoDe) that retains both spatial and temporal resolution by preserving individual electron events. Running ReCoDe on a workstation we demonstrate on-the-fly reduction and compression of raw data streaming off a detector at 3 GB/s, for hours of uninterrupted data collection. The output was 100-fold smaller than the raw data and saved directly onto network-attached storage drives over a 10 GbE connection. We discuss calibration techniques that support electron detection and counting (e.g., estimate electron backscattering rates, false positive rates, and data compressibility), and novel data analysis methods enabled by ReCoDe (e.g., recalibration of data post acquisition, and accurate estimation of coincidence loss).


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Jan Lepicovsky ◽  
David Simurda

The aim of this paper is to review, summarize, and record long-term experience with development and application of aerodynamic probes with built-in miniature pressure transducers for unsteady pressure measurement and industrial research in turbomachine components. The focus of the first half of the paper is on the work performed at VZLU Prague, Czech Republic (Secs. 3–8). The latest development in unsteady pressure measurement techniques and data reduction methodology suitable for future research in highly loaded, high-speed turbine engine components performed at NASA GRC Cleveland, OH, is reported in Secs. 8–15 of this paper. Excellent reviews of similar activities at ETH Zürich, Switzerland by Kupferschmied, et al. (2000, “Time-Resolved Flow Measurements With Fast-Response Aerodynamic Probes in Turbomachines,” Meas. Sci. Technol., 11(7), pp. 1036–1054) and at VKI Rhode-Sain-Genèse, Belgium by Sieverding, et al. (2000, “Measurement Techniques for Unsteady Flows in Turbomachines,” Exp. Fluids, 28(4), pp. 285–321) were already reported and are acknowledged here. A short list of reported accomplishments achieved by other researchers at various laboratories is also reported for completeness. The authors apologize to those whose contributions are not reported here. It is just an unfortunate oversight, not an intentional omission.


1995 ◽  
Vol 28 (5) ◽  
pp. 461-481 ◽  
Author(s):  
Z. Ren ◽  
K. Moffat

The reduction of X-ray diffraction data obtained by the Laue method to accurate integrated intensities is more complicated and much less familiar than the reduction of monochromatic data. Problems of data accuracy and completeness have hindered the wide use of the Laue technique in macromolecular crystallography. Its unique advantage, data-collection speed, has been exploited only in situations such as fast time-resolved crystallography, to which monochromatic techniques are not as well suited. This paper reviews the major problems in data reduction in the Laue technique and provides a unified solution to the problems in integration of both streaky and spatially overlapping spots and data scaling. This solution has been incorporated into a new Laue diffraction data-reduction software package, LaueView. Laue data sets from crystals of lysozyme and α-haemolysin have been processed to test this solution, and demonstrate that Laue data sets can be reduced to yield structure amplitudes of at the very least the same quality as the best monochromatic data sets in terms of both accuracy and completeness.


2012 ◽  
Vol 52 (6) ◽  
pp. 1567-1579 ◽  
Author(s):  
Peter J. Schmid ◽  
Daniele Violato ◽  
Fulvio Scarano

2003 ◽  
Vol 125 (1) ◽  
pp. 33-39 ◽  
Author(s):  
R. J. Miller ◽  
R. W. Moss ◽  
R. W. Ainsworth ◽  
N. W. Harvey

The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows is investigated, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries are considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were conducted at engine-representative Mach and Reynolds numbers, and experimental data was acquired using fast-response pressure transducers mounted on the mid-height streamline of the HP rotor blades. The results are compared to time-resolved computational predictions of the flowfield in order to aid interpretation of experimental results and to determine the accuracy with which the computation predicts blade interaction. The paper is split into two parts: the first investigating the effect of the upstream vane on the unsteady pressure field around the rotor (vane-rotor interaction), and the second investigating the effect of the downstream vane on the unsteady pressure field around the rotor (rotor-vane interaction). The paper shows that at typical design operating conditions shock interaction from the upstream blade row is an order of magnitude greater than wake interaction and that with the design vane-rotor inter-blade gap the presence of the rotor causes a periodic increase in the strength of the vane trailing edge shock. The presence of the potential field of the downstream vane is found to affect significantly the rotor pressure field downstream of the Mach one surface within each rotor passage.


Sign in / Sign up

Export Citation Format

Share Document