Launch Environment Water Flow Simulation Using Smoothed Particle Hydrodynamics

Author(s):  
Bruce T. Vu ◽  
Jared J. Berg ◽  
Michael F. Harris ◽  
Alejandro C. Crespo
2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Zhengang Liu ◽  
Zhenxia Liu

Poiseuille flows at two Reynolds numbers (Re) 2.5 × 10−2 and 5.0 are simulated by two different smoothed particle hydrodynamics (SPH) schemes on regular and irregular initial particles' distributions. In the first scheme, the viscous stress is calculated directly by the basic SPH particle approximation, while in the second scheme, the viscous stress is calculated by the combination of SPH particle approximation and finite difference method (FDM). The main aims of this paper are (a) investigating the influences of two different schemes on simulations and reducing the numerical instability in simulating Poiseuille flows discovered by other researchers and (b) investigating whether the similar instability exists in other cases and comparing results with the two viscous stress approximations. For Re = 2.5 × 10−2, the simulation with the first scheme becomes instable after the flow approaches to steady-state. However, this instability could be reduced by the second scheme. For Re = 5.0, no instability for two schemes is found.


Author(s):  
A. Ch. H. Kruisbrink ◽  
H. P. Morvan ◽  
F. R. Pearce

In this paper some novel Smoothed Particle Hydrodynamics (SPH) concepts are presented towards a feasibility study into the use of SPH for some aero-engine applications, e.g. for internal oil or fuel applications. A first challenge is to develop a capability to model complex wall geometries, associated with two-phase flows in gear boxes and bearing chambers for example. A demonstration is made of how such complex (for SPH) geometries can be built together with an outline of some of the wall boundary condition concepts used, including moving walls. This is an important feature for the application of SPH to engineering. Other boundary conditions are needed such as inlets, outlets and pressure boundaries, and a proper treatment of the free surface. These are outlined in the context of the proposed application. From an SPH flow simulation viewpoint, one of the challenges is to reduce the non-physical density variations arising from boundary conditions (at wall, free surface and interface), which are responsible for non-physical pressure variations and particle dynamics. The flow regimes found in the engineering systems outlined above involve droplets, filaments and films. It is therefore important to be able to handle the merging of fluids, as it is to model their interaction with another phase, which calls for appropriate multi-fluid and surface tension models. This paper introduces SPH, outlines a number of concepts listed above and presents some preliminary results towards the modeling of the KIT bearing chamber, as described by Kurz et al. [1]. This work builds on a number of numerical modeling communications made by the Nottingham team to SPHERIC, the ERCOFTAC Special Interest Group (SIG) for SPH.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1081
Author(s):  
Leonardo Di G. Sigalotti ◽  
Carlos E. Alvarado-Rodríguez ◽  
Jaime Klapp ◽  
José M. Cela

The flow through pipe bends and elbows occurs in a wide range of applications. While many experimental data are available for such flows in the literature, their numerical simulation is less abundant. Here, we present highly-resolved simulations of laminar and turbulent water flow in a 90° pipe bend using Smoothed Particle Hydrodynamics (SPH) methods coupled to a Large-Eddy Simulation (LES) model for turbulence. Direct comparison with available experimental data is provided in terms of streamwise velocity profiles, turbulence intensity profiles and cross-sectional velocity maps at different stations upstream, inside and downstream of the pipe bend. The numerical results are in good agreement with the experimental data. In particular, maximum root-mean-square deviations from the experimental velocity profiles are always less than ∼1.4%. Convergence to the experimental measurements of the turbulent fluctuations is achieved by quadrupling the resolution necessary to guarantee convergence of the velocity profiles. At such resolution, the deviations from the experimental data are ∼0.8%. In addition, the cross-sectional velocity maps inside and downstream of the bend shows that the experimentally observed details of the secondary flow are also very well predicted by the numerical simulations.


2020 ◽  
Vol 111 ◽  
pp. 334-351 ◽  
Author(s):  
Yufei Yuan ◽  
Bernat Goñi-Ros ◽  
Ha H. Bui ◽  
Winnie Daamen ◽  
Hai L. Vu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document