Lyapunov-Based Nonlinear Control of Wind Tunnel Supersonic Nozzle Contour

Author(s):  
Mohammad Sadraey
2014 ◽  
Vol 590 ◽  
pp. 546-550
Author(s):  
Zhi Qiang Fan ◽  
Hai Bo Yang ◽  
Fei Zhao ◽  
Rong Zhu ◽  
Dong Bai Sun

The practical requirements of the project the nozzle entrance temperature is high, the gas specific heat ratio varies greatly, so it must consider the specific heat ratio change impact on two-dimensional nozzle contour design. Divided into consideration specific heat ratio change and not consider two kinds of scheme design of 1.4Ma nozzle profile and build the model using the arc line method, numerical simulation is carried out through the CFD software Fluent, analysis of two kinds of design scheme comparison. The results show that, in the supersonic nozzle at low Maher numbers, two schemes of nozzle design profile similarity, parameters change little flow tube, export the Maher number and the flow quality can meet the design requirements, proof of specific heat ratio has little effect on the design results in the design of the nozzle under the condition of low Maher number.


2012 ◽  
Vol 232 ◽  
pp. 228-233
Author(s):  
Behnam Ghadimi ◽  
Mojtaba Dehghan Manshadi ◽  
Mehrdad Bazazzadeh

Wind tunnels are the experimental apparatuses which provide an airstream flowing under controlled conditions so that interesting items in aerospace engineering such as pressure and velocity can be tested. In this work, Shock wave passes through the intermittent blow-down wind tunnel at Mach=2,3,4 has been investigated. The shape of the nozzle contour for a given Mach number was determined using the method of characteristics. For this purpose MATLAB code was developed and this code was verified with Osher’s and AUSM methods, FORTRAN code and FLUENT software was used for these two methods, respectively. Dimensions of different parts of wind tunnel are determined and minimum pressure ratio for the starting condition has been founded using FLUENT software. Good agreement was considered compared with the data from eleven tunnels over their range of Mach number.


2012 ◽  
Vol 569 ◽  
pp. 500-503
Author(s):  
Lian Sheng Wu ◽  
Guang Li Li ◽  
Qi Fu

A practical optimal design method of supersonic nozzle is proposed for a supersonic wind tunnel’s design. Design a set of nozzle wall lines with the same nozzle length and different Mach numbers 1.5, 2.0, 2.5. Use numerical simulation method for the verify and analysis of the designed nozzle. Mainly study the impact of the installation gradient between nozzle and test section on flow field quality. This wind tunnel is the subsonic, transonic and supersonic wind tunnel and its test section cross is 0.2 m × 0.2 m .The impact on flow field quality of the test section was studied quantitatively by using the numerical simulation method. The installation gradient index was given. It has some practical value to the construction of supersonic wind tunnel. At present, this study has been applied in construction of the wind tunnel. The gradient of the test section import shall not be greater than 0.5 mm.


In this paper a supersonic nozzle was designed using the MOC method and the nozzle contour has been created. The computational model was developed to model the characteristics of the jet of Mach number 1.5 & Mach number 2 nozzles. The computational model was created with compressible flow field properties in order to get the most accurate result. The pressure inlet and outlet boundary conditions have been applied with viscous flow solver. In order to get the shock flow visualization and high-speed jet characteristics the exit has been extended to 5D vertical and 15D horizontal and the virtual atmosphere has been created. For both models, the CAA (computation acoustical analysis) carried out using flows, Williams and Hawkings acoustic solver to get far-field noise radiation. The experimental technique and future works were discussed. The Jet characteristics of two nozzles were examined and noise sources have been compared.


Author(s):  
Shenghao Wu ◽  
Daxiong Liao ◽  
Jiming Chen ◽  
Qin Chen ◽  
Haitao Pei

Supersonic nozzle contour optimization design was applied to 0.6m×0.6m continuous transonic wind tunnel to improve flow quality in the test section. The Mach number root mean square deviation with the design value was chosen as optimization target. And the CFD results were verified with experimental results. Cubic spline curves with the optimal interpolating point distribution scheme were used to fit the nozzle contour. Efficient global optimization based on the Gaussian process surrogate model was used to reduce the times of evaluation. Results indicate that, the optimization framework can generate a supersonic nozzle contour with better flow quality and more accurate Mach number and that the optimal Mach number root mean square deviation is 0.001.


Sign in / Sign up

Export Citation Format

Share Document