False Positive and False Negative Analysis for Enhancing Liquid Propulsion System Reliability and Safety

Author(s):  
Zhaofeng Huang
1974 ◽  
Vol 31 (02) ◽  
pp. 273-278
Author(s):  
Kenneth K Wu ◽  
John C Hoak ◽  
Robert W Barnes ◽  
Stuart L Frankel

SummaryIn order to evaluate its daily variability and reliability, impedance phlebography was performed daily or on alternate days on 61 patients with deep vein thrombosis, of whom 47 also had 125I-fibrinogen uptake tests and 22 had radiographic venography. The results showed that impedance phlebography was highly variable and poorly reliable. False positive results were noted in 8 limbs (18%) and false negative results in 3 limbs (7%). Despite its being simple, rapid and noninvasive, its clinical usefulness is doubtful when performed according to the original method.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 259-260
Author(s):  
Laura Curtis ◽  
Lauren Opsasnick ◽  
Julia Yoshino Benavente ◽  
Cindy Nowinski ◽  
Rachel O’Conor ◽  
...  

Abstract Early detection of Cognitive impairment (CI) is imperative to identify potentially treatable underlying conditions or provide supportive services when due to progressive conditions such as Alzheimer’s Disease. While primary care settings are ideal for identifying CI, it frequently goes undetected. We developed ‘MyCog’, a brief technology-enabled, 2-step assessment to detect CI and dementia in primary care settings. We piloted MyCog in 80 participants 65 and older recruited from an ongoing cognitive aging study. Cases were identified either by a documented diagnosis of dementia or mild cognitive impairment (MCI) or based on a comprehensive cognitive battery. Administered via an iPad, Step 1 consists of a single self-report item indicating concern about memory or other thinking problems and Step 2 includes two cognitive assessments from the NIH Toolbox: Picture Sequence Memory (PSM) and Dimensional Change Card Sorting (DCCS). 39%(31/80) participants were considered cognitively impaired. Those who expressed concern in Step 1 (n=52, 66%) resulted in a 37% false positive and 3% false negative rate. With the addition of the PSM and DCCS assessments in Step 2, the paradigm demonstrated 91% sensitivity, 75% specificity and an area under the ROC curve (AUC)=0.82. Steps 1 and 2 had an average administration time of <7 minutes. We continue to optimize MyCog by 1) examining additional items for Step 1 to reduce the false positive rate and 2) creating a self-administered version to optimize use in clinical settings. With further validation, MyCog offers a practical, scalable paradigm for the routine detection of cognitive impairment and dementia.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S35-S36
Author(s):  
Hadrian Mendoza ◽  
Christopher Tormey ◽  
Alexa Siddon

Abstract In the evaluation of bone marrow (BM) and peripheral blood (PB) for hematologic malignancy, positive immunoglobulin heavy chain (IG) or T-cell receptor (TCR) gene rearrangement results may be detected despite unrevealing results from morphologic, flow cytometric, immunohistochemical (IHC), and/or cytogenetic studies. The significance of positive rearrangement studies in the context of otherwise normal ancillary findings is unknown, and as such, we hypothesized that gene rearrangement studies may be predictive of an emerging B- or T-cell clone in the absence of other abnormal laboratory tests. Data from all patients who underwent IG or TCR gene rearrangement testing at the authors’ affiliated VA hospital between January 1, 2013, and July 6, 2018, were extracted from the electronic medical record. Date of testing; specimen source; and morphologic, flow cytometric, IHC, and cytogenetic characterization of the tissue source were recorded from pathology reports. Gene rearrangement results were categorized as true positive, false positive, false negative, or true negative. Lastly, patient records were reviewed for subsequent diagnosis of hematologic malignancy in patients with positive gene rearrangement results with negative ancillary testing. A total of 136 patients, who had 203 gene rearrangement studies (50 PB and 153 BM), were analyzed. In TCR studies, there were 2 false positives and 1 false negative in 47 PB assays, as well as 7 false positives and 1 false negative in 54 BM assays. Regarding IG studies, 3 false positives and 12 false negatives in 99 BM studies were identified. Sensitivity and specificity, respectively, were calculated for PB TCR studies (94% and 93%), BM IG studies (71% and 95%), and BM TCR studies (92% and 83%). Analysis of PB IG gene rearrangement studies was not performed due to the small number of tests (3; all true negative). None of the 12 patients with false-positive IG/TCR gene rearrangement studies later developed a lymphoproliferative disorder, although 2 patients were later diagnosed with acute myeloid leukemia. Of the 14 false negatives, 10 (71%) were related to a diagnosis of plasma cell neoplasms. Results from the present study suggest that positive IG/TCR gene rearrangement studies are not predictive of lymphoproliferative disorders in the context of otherwise negative BM or PB findings. As such, when faced with equivocal pathology reports, clinicians can be practically advised that isolated positive IG/TCR gene rearrangement results may not indicate the need for closer surveillance.


Sign in / Sign up

Export Citation Format

Share Document