Three-dimensional Effects in the Wake Vortex Formation of Flapping Flat Plate in Hover

Author(s):  
Siddarth Chintamani ◽  
Alok A. Rege ◽  
Brian H. Dennis ◽  
Kamesh Subbarao
Author(s):  
Vivek Nair ◽  
Siddarth Chintamani ◽  
B. H. Dennis

A Numerical Analysis is conducted to investigate the Leading Edge Vortex (LEV) dynamics of an elliptic flat plate undergoing 2 dimensional symmetric flapping motion in hover. The plate is modeled with an aspect ratio of 3 and a flapping trajectory resulting in Reynolds number 225 is studied. The leading edge vortex stability is analyzed as a function of the non dimensional formation number and a vorticity transport analysis is carried to understand the flux budgets present. The LEV formation number is found to be 2.6. The results of vorticity analysis show the highly three dimensional nature of the LEV growth for an elliptic geometry.


Author(s):  
Kimihide Odagiri ◽  
Kieran Wolk ◽  
Stefano Cappucci ◽  
Stefano Morellina ◽  
Scott Roberts ◽  
...  

Author(s):  
A. Samson ◽  
S. Sarkar

The dynamics of separation bubble under the influence of continuous jets ejected near the semi-circular leading edge of a flat plate is presented. Two different streamwise injection angles 30° and 60° and velocity ratios 0.5 and 1 for Re = 25000 and 55000 (based on the leading-edge diameter) are considered here. The flow visualizations illustrating jet and separated layer interactions have been carried out with PIV. The objective of this study is to understand the mutual interactions of separation bubble and the injected jets. It is observed that flow separates at the blending point of semi-circular arc and flat plate. The separated shear layer is laminar up to 20% of separation length after which perturbations are amplified and grows in the second-half of the bubble leading to breakdown and reattachment. Blowing has significantly affected the bubble length and thus, turbulence generation. Instantaneous flow visualizations supports the unsteadiness and development of three-dimensional motions leading to formation of Kelvin-Helmholtz rolls and shedding of large-scale vortices due to jet and bubble interactions. In turn, it has been seen that both the spanwise and streamwise dilution of injected air is highly influenced by the separation bubble.


2000 ◽  
Author(s):  
B. V. Rathish Kumar ◽  
T. Yamaguchi ◽  
H. Liu ◽  
R. Himeno

Abstract Unsteady flow dynamics in a doubly constricted vessel is analyzed by using a time accurate Finite Volume solution of three dimensional incompressible Navier-Stokes equations. Computational experiments are carried out for various values of Reynolds number in order to assess the criticality of multiple mild constrictions in series and also to bring out the subtle 3D features like vortex formation. Studies reveal that pressure drop across a series of mild constrictions can get physiologically critical. Further this pressure drop is found to be sensitive to the spacing between the constrictions and also to the oscillatory nature of the inflow profile.


1982 ◽  
Author(s):  
M. Namba ◽  
A. Ishikawa

A lifting surface theory is developed for unsteady three-dimensional flow in rotating subsonic, transonic and supersonic annular cascades with fluctuating blade loadings. Application of a finite radial eigenfunction series approximation not only affords a clear insight into the three-dimensional structures of acoustic fields but also provides mathematical expressions advantageous to numerical work. The theory is applied to oscillating blades. Numerical examples are presented to demonstrate three-dimensional effects on aerodynamic characteristics. Three-dimensional effects in supersonic cascades are generally small and strip theory predicts local aerodynamic forces as well as total aerodynamic forces with good accuracy. In transonic flow, however, the strip theory approximation breaks down near the sonic span station and three-dimensional effects are of primary importance.


Sign in / Sign up

Export Citation Format

Share Document