The Effects of Freestream Turbulence on Steady VGJ Flow Control on a Highly Loaded Transonic LPT Cascade

Author(s):  
Craig Sacco ◽  
Mohammad Arif Hossain ◽  
Jeffrey P. Bons
Author(s):  
Longxin Zhang ◽  
Le Cai ◽  
Bao Liu ◽  
Jun Ding ◽  
Songtao Wang

As a promising active flow control method, boundary layer suction (BLS) can be used to enhance the aerodynamic performance of the highly-loaded compressor effectively, and due to this reason, extensive studies have been carried out on it. However, contrast to those abundant studies focusing on the flow control effects of BLS, little attention has been paid on the design method of the aspiration flow path. This work presents a 3-D steady numerical simulation on a highly-loaded aspirated compressor cascade. The aspiration slot is implemented at its best location based on the previous experimental studies and the aspiration flow rate is fix to 1.5% of the inlet massflow. The plenum configuration follows the blade shape and remains unchanged. One-side-aspiration manner is adopted to simplify the aspiration devices. Two critical geometry parameters, slot angle and slot width, are varied to study the effects of blade aspiration slot configuration on the cascade loss, radial distribution of the aspiration flow rate and inner flow structures within the aspiration flow path. Results show that the slot configuration does affect the cascade performance. In comparison with the throughflow performance, it is especially true once the flow loss caused by the aspiration flow path is also taken into account, and higher flow loss will be generated within the aspiration flow path if an inappropriate scheme is adopted. In the present investigation, apart from the cases with larger negative slot angle, a wider slot is more preferable to a narrower one, since it could enhance the aspiration capacity near the endwall regions and lower the dissipation loss within the aspiration flow path. In terms of the slot angle, a larger negative value, i.e., the slot direction more aligned with the incoming flow, is not beneficial to improve the throughflow performance, while concerning the flow loss yield by the aspiration flow path, a proper negative slot angle is always optimal.


Author(s):  
Hongxin Zhang ◽  
Shaowen Chen ◽  
Yun Gong ◽  
Songtao Wang

A numerical research is applied to investigate the effect of controlling the flow separation in a certain highly loaded compressor cascade using different unsteady flow control techniques. Firstly, unsteady pulsed suction as a new novel unsteady flow control technique was proposed and compared to steady constant suction in the control of flow separation. A more exciting effect of controlling the flow separation and enhancing the aerodynamic performance for unsteady pulsed suction was obtained compared to steady constant suction with the same time-averaged suction flow rate. Simultaneously, with the view to further exploring the potential of unsteady flow control technique, unsteady pulsed suction, unsteady pulsed blowing, and unsteady synthetic jet (three unsteady flow control techniques) are analyzed comparatively in detail by the related unsteady aerodynamic parameters such as excitation location, frequency, and amplitude. The results show that unsteady pulsed suction shows greater advantage than unsteady pulsed blowing and unsteady synthetic jet in controlling the flow separation. Unsteady pulsed suction and unsteady synthetic jet have a wider range of excitation location obtaining positive effects than unsteady pulsed blowing. The ranges of excitation frequency and excitation amplitude for unsteady pulsed suction gaining favorable effects are both much wider than that of unsteady pulsed blowing and unsteady synthetic jet. The optimum frequencies of unsteady pulsed suction, unsteady pulsed blowing, and unsteady synthetic jet are found to be different, but these optimum frequencies are all an integer multiple of the natural frequency of vortex shedding. The total pressure loss coefficient is reduced by 16.98%, 16.55%, and 17.38%, respectively, when excitation location, frequency, and amplitude are all their own optimal values for unsteady pulsed suction, unsteady pulsed blowing, and unsteady synthetic jet. The optimum result of unsteady synthetic jet only slightly outperforms that of unsteady pulsed suction and unsteady pulsed blowing. But unfortunately, there is no advantage from the standpoint of overall efficiency for the optimum result of unsteady synthetic jet because the slight improvement has to require a greater power consumption than the unsteady pulsed suction and unsteady pulsed blowing methods.


2012 ◽  
Vol 28 (5) ◽  
pp. 1277-1286 ◽  
Author(s):  
Xiao-Hu Zhao ◽  
Yun Wu ◽  
Ying-Hong Li ◽  
Xue-De Wang ◽  
Qin Zhao

Author(s):  
Daniel Nerger ◽  
Horst Saathoff ◽  
Rolf Radespiel ◽  
Volker Gu¨mmer ◽  
Carsten Clemen

The following paper describes an experimental investigation of a highly loaded stator cascade with a pitch to chord ratio of t/l = 0.6. Experiments without as well as with active flow control by means of endwall and suction side blowing were conducted. Five-hole-probe measurements in pitchwise and spanwise direction as well as endwall oil flow visualizations were carried out in order to determine the performance of the cascade and to analyze the flow phenomena occuring. To quantify the effectivity of the active flow control method, taking the additional energy input into account, corrected losses and an efficiency, which relates the difference of flow power deficit with and without active flow control to the flow power of the blowing jet itself, were evaluated. Even though an increase of static pressure rise could be achieved, a decrease of the total pressure losses was possible for a few operating points only.


Author(s):  
M. Eric Lyall ◽  
Paul I. King ◽  
Rolf Sondergaard ◽  
John P. Clark ◽  
Mark W. McQuilling

This paper presents an experimental and computational study of the midspan low Reynolds number loss behavior for two highly loaded low pressure turbine airfoils, designated L2F and L2A, which are forward and aft loaded, respectively. Both airfoils were designed with incompressible Zweifel loading coefficients of 1.59. Computational predictions are provided using two codes, Fluent (with k-k1-ω model) and AFRL’s Turbine Design and Analysis System (TDAAS), each with a different eddy-viscosity RANS based turbulence model with transition capability. Experiments were conducted in a low speed wind tunnel to provide transition models for computational comparisons. The Reynolds number range based on axial chord and inlet velocity was 20,000 < Re < 100,000 with an inlet turbulence intensity of 3.1%. Predictions using TDAAS agreed well with the measured Reynolds lapse rate. Computations using Fluent however, predicted stall to occur at significantly higher Reynolds numbers as compared to experiment. Based on triple sensor hot-film measurements, Fluent’s premature stall behavior is likely the result of the eddy-viscosity hypothesis inadequately capturing anisotropic freestream turbulence effects. Furthermore, rapid distortion theory is considered as a possible analytical tool for studying freestream turbulence that influences transition near the suction surface of LPT airfoils. Comparisons with triple sensor hot-film measurements indicate that the technique is promising but more research is required to confirm its utility.


Author(s):  
M Hecklau ◽  
C Gmelin ◽  
W Nitsche ◽  
F Thiele ◽  
A Huppertz ◽  
...  

This article presents experimental and numerical results for a compressor cascade with active flow control. Steady and pulsed blowing has been used to control the secondary flow and separation characteristics of a highly loaded controlled diffusion airfoil. Investigations were performed at the design incidence for blowing ratios from approximately 0.7 to 3.0 (jet-to-inlet velocity) and a Reynolds number of 840 000 (based on axial chord and inlet velocity). Detailed flow field data were collected using a five-hole pressure probe, pressure taps on the blade surfaces, and time-resolved Particle Image Velocimetry. Unsteady Reynolds-averaged Navier–Stokes simulations were performed for a wide range of flow control parameters. The experimental and numerical results are used to understand the interaction between the jet and the passage flow. The benefit of the flow control on the cascade performance is weighted against the costs of the actuation by introducing an efficiency which takes the presence of the jets into account.


Author(s):  
Julia Kurz ◽  
Reinhard Niehuis

One application method of active flow control is the exploitation of the interaction between transition and flow separation on a profile. As turbulent flows are able to withstand higher adverse pressure gradients the enforcement of the transition process can be utilized to prevent or to reduce flow separation. This paper focuses on gaining a better understanding of high frequency active flow control (AFC) by fluidic oscillators and its influence on the transition process for a separated boundary layer. Flow control is applied on a highly loaded turbine exit case (TEC) profile which was in particular designed for this application. The profile is investigated in the high-speed cascade wind tunnel at the Bundeswehr University Munich. Significant loss reduction by AFC could be observed by total pressure loss determination in the low Reynolds number regime. In order to gain a better understanding of development of the suction side boundary layer, several boundary layer profiles are determined by hot-wire measurements at six axial positions on the suction side of the profile. Differences between the boundary layer development and the extent of the separation can be detected. Furthermore, a stability analysis of the boundary layer upstream of separation is conducted and compared to the measured frequency spectra.


Sign in / Sign up

Export Citation Format

Share Document