Application of an Adaptive Shock Control Bump for Drag Reduction on a Variable Camber NLF Wing

Author(s):  
Michael Werner
Author(s):  
Markus Kintscher ◽  
Johannes Riemenschneider ◽  
Hans-Peter Monner ◽  
Martin Wiedemann

AbstractDrag reduction technologies in aircraft design are the key enabler for reducing emissions and for sustainable growth of commercial aviation. Laminar wing technologies promise a significant benefit by drag reduction and are, therefore, under investigation in various European projects. However, of the established moveable concepts and high-lift systems thus far most do not cope with the requirements for natural laminar flow wings. To this aim, new leading edge high-lift systems have been the focus of research activities in the last 5 years. Such leading edge devices investigated in projects include a laminar flow-compatible Kruger flap (Schlipf (2011) Insect shielding Krüger—structural design for a laminar flow wing. In: DGLR Congress 2011, Bremen, pp 55–60) and the Droop Nose concept (Kintscher et al. Ground testof an enhanced adaptive droop nose device. In: European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2016. ECCOMAS2016—VII European Congress on Computational Methods in Applied Sciences and Engineering, 5–10 June 2016, Crete Island, Greece; Kintscher et al. Low speed wind tunnel test of a morphing leading edge. In: AIDAA—Italian Association of Aeronautics and Astronautics XXII Conference, 09–12 Sept. 2013. Neapel, Italien) and these can be considered as alternatives to the conventional slat. Hybrid laminar flow concepts are also under investigation at several research institutes in Europe (Fischer. Stepless and sustainable research for the aircraft of tomorrow—from AFloNext to Clean Sky 2. In: 1st AFloNext Workshop Key Note Lecture No. 1, Delft, The Netherlands, 10 Sept 2015). Another challenge associated with laminar wings aside from the development of leading edge movables is the need to address the control of aerodynamic shocks and buffeting as laminar wings are sensitive to high flow speeds. Here, one possible method of decreasing the wave drag caused by the aerodynamic shock is through the use of shock control bumps (SCBs). The objective of SCBs is the conversion of a single strong shock into several smaller and weaker λ-shocks resulting in a drag benefit when deployed correctly. A particular desirable characteristic of SCBs is that they should be adaptable in position and height as the shock position changes with varying conditions such as speed, altitude, and angle of attack during the flight. However, as a fixed case, SCBs can also help to control laminar buffeting by fixing the shock into given positions at the SCBs location. In this paper, a structural concept for an adaptive shock control bump spoiler is presented. Based on a concept of a fixed bump SCB spoiler, a design for an adaptive spoiler with two conventional actuators is presented. Design drivers and interdependencies of important design parameters are discussed. The presented design is simple and aims for a high TRL without adding much complexity to the spoiler. It is robust and able to form a bump with a height of 0.6% chord length which position can be adapted in a range of 10% chord. This paper is a follow-up of a previous publication (Kintscher and Monner, SAE Tech Paper 10.4271/2017-01-2164, 2017) with extending the focus by a validation of computational results by experimental tests.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 203
Author(s):  
Yufei Zhang ◽  
Pu Yang ◽  
Runze Li ◽  
Haixin Chen

The unsteady flow characteristics of a supercritical OAT15A airfoil with a shock control bump were numerically studied by a wall-modeled large eddy simulation. The numerical method was first validated by the buffet and nonbuffet cases of the baseline OAT15A airfoil. Both the pressure coefficient and velocity fluctuation coincided well with the experimental data. Then, four different shock control bumps were numerically tested. A bump of height h/c = 0.008 and location xB/c = 0.55 demonstrated a good buffet control effect. The lift-to-drag ratio of the buffet case was increased by 5.9%, and the root mean square of the lift coefficient fluctuation was decreased by 67.6%. Detailed time-averaged flow quantities and instantaneous flow fields were analyzed to demonstrate the flow phenomenon of the shock control bumps. The results demonstrate that an appropriate “λ” shockwave pattern caused by the bump is important for the flow control effect.


2013 ◽  
Vol 80 ◽  
pp. 214-224 ◽  
Author(s):  
D.S. Lee ◽  
G. Bugeda ◽  
J. Periaux ◽  
E. Onate

2014 ◽  
Vol 1 (1) ◽  
pp. 215-220
Author(s):  
A Saeed ◽  
Malik. S. Raza ◽  
Ahmed Mohsin Khalil

AbstractAir travelling is the second largest travelling medium used by people. In future it is expected to be the first choice for the travellers. As increase in the price of oil cost of air travelling is getting higher. Engineers are forced to find the cheaper means of travelling by innovating new techniques. This paper presents the new idea to reduce air travelling cost by reducing drag, which is major driving factor of high fuel consumption. Two-dimensional and three-dimensional shock control contour bumps have been designed and analysed for a supercritical wing section with the aim of transonic wave drag reduction. A supercritical airfoil (NACA SC (02)-0714) has been selected for this study considering the fact that most modern jet transport aircraft that operate in the transonic flow regime (cruise at transonic speeds) employ supercritical airfoil sections. It is to be noted that a decrease in the transonic wave drag without loss in lift would result in an increased lift to drag ratio, which being a key range parameter could potentially increase both the range and endurance of the aircraft. The major geometric bump parameters such as length, height, crest and span have been altered for both the two-dimensional and three-dimensional bumps in order to obtain the optimum location and shape of the bump. Once an optimum standalone three-dimensional bump has been acquired an array of bumps has been manually placed spanwise of an unswept supercritical wing and analysed under fully turbulent flow conditions. Different configurations have been tested with varying three-dimensional bump spacing in order to determine the contribution of bump spacing on overall performance. The results show a 14 percent drag reduction and a consequent 16 percent lift to drag ratio rise at the design Mach number for the optimum arrangement of bumps along the wing span. This innovative technique proves to be a bridge between economical problems and engineering solutions and a milestone for aviation engineering.


Sign in / Sign up

Export Citation Format

Share Document