Making Air Travelling More Economical, An Innovative Drag Reduction Approach For A Supercritical Wing Section Using Shock Control Bumps

2014 ◽  
Vol 1 (1) ◽  
pp. 215-220
Author(s):  
A Saeed ◽  
Malik. S. Raza ◽  
Ahmed Mohsin Khalil

AbstractAir travelling is the second largest travelling medium used by people. In future it is expected to be the first choice for the travellers. As increase in the price of oil cost of air travelling is getting higher. Engineers are forced to find the cheaper means of travelling by innovating new techniques. This paper presents the new idea to reduce air travelling cost by reducing drag, which is major driving factor of high fuel consumption. Two-dimensional and three-dimensional shock control contour bumps have been designed and analysed for a supercritical wing section with the aim of transonic wave drag reduction. A supercritical airfoil (NACA SC (02)-0714) has been selected for this study considering the fact that most modern jet transport aircraft that operate in the transonic flow regime (cruise at transonic speeds) employ supercritical airfoil sections. It is to be noted that a decrease in the transonic wave drag without loss in lift would result in an increased lift to drag ratio, which being a key range parameter could potentially increase both the range and endurance of the aircraft. The major geometric bump parameters such as length, height, crest and span have been altered for both the two-dimensional and three-dimensional bumps in order to obtain the optimum location and shape of the bump. Once an optimum standalone three-dimensional bump has been acquired an array of bumps has been manually placed spanwise of an unswept supercritical wing and analysed under fully turbulent flow conditions. Different configurations have been tested with varying three-dimensional bump spacing in order to determine the contribution of bump spacing on overall performance. The results show a 14 percent drag reduction and a consequent 16 percent lift to drag ratio rise at the design Mach number for the optimum arrangement of bumps along the wing span. This innovative technique proves to be a bridge between economical problems and engineering solutions and a milestone for aviation engineering.

Author(s):  
Eduardo Tadashi Katsuno ◽  
Joao Lucas Dozzi Dantas ◽  
Emilio Carlos Nelli Silva

This paper aims to perform a numerical analysis of application effects of a superhydrophobic paint by completely coating the blades of a model-scale marine propeller in order to make it a superhydrophobic surface (SHS). First, a two-dimensional study was conducted. Two foils were analyzed for several hydrophobic conditions, varying the slip length. Pressure and skin friction distributions were shown. There is an increase of lift-to-drag ratio with hydrophobicity, but followed by an increase in suction pressure. In three-dimensional case, a propeller was simulated for several hydrophobic conditions, comparing thrust, torque and efficiency coefficients and pressure and friction distribution. Results with propeller showed that an increase in slip length is not always followed by an increase in efficiency, with an apparent efficiency gain limit. For the imposed simulation conditions, from the limit of gain, efficiency no longer increases with hydrophobicity, but its area of low pressure continues to grow.


2014 ◽  
Vol 118 (1209) ◽  
pp. 1359-1372
Author(s):  
X. Guan

Abstract Wave drag reduction is important for the aerodynamic performance optimisation of supersonic cruise aircrafts, such as the supersonic civil transport and the supersonic cruise missile. In this paper a method of the supersonic wing-body wave drag optimisation, the wave drag co-optimisation based on far-field composite elements (CoFCE), is proposed based on class-shape-transformation (CST) parameterisation. Wave drag optimisation cases of a supersonic civil transport wing-body are presented, including the optimisation results and computation cost analyses. It is suggested that the supersonic wing-body wave drag can be significantly reduced by the proposed method with relatively small numbers of design parameter. In the optimisation case presented in this paper a 45% wave drag reduction is achieved. The wave drag optimised configuration also achieved significant lift to drag ratio improvements in small angles-of-attack supersonic cruise flight conditions.


2002 ◽  
Vol 205 (3) ◽  
pp. 371-378
Author(s):  
L. Christoffer Johansson ◽  
Björn S. Wetterholm Aldrin

SUMMARY To examine the propulsion mechanism of diving Atlantic puffins (Fratercula arctica), their three-dimensional kinematics was investigated by digital analysis of sequential video images of dorsal and lateral views. During the dives of this wing-propelled bird, the wings are partly folded, with the handwings directed backwards. The wings go through an oscillating motion in which the joint between the radius-ulna and the hand bones leads the motion, with the wing tip following. There is a large rotary motion of the wings during the stroke, with the wings being pronated at the beginning of the downstroke and supinated at the end of the downstroke/beginning of the upstroke. Calculated instantaneous velocities and accelerations of the bodies of the birds show that, during the downstroke, the birds accelerate upwards and forwards. During the upstroke, the birds accelerate downwards and, in some sequences analysed, also forwards, but in most cases the birds decelerate. In all the upstrokes analysed, the forward/backward acceleration shows the same pattern, with a reduced deceleration or even a forward acceleration during ‘mid’ upstroke indicating the production of a forward force, thrust. Our results show that the Atlantic puffin can use an active upstroke during diving, in contradiction to previous data. Furthermore, we suggest that the partly folded wings of diving puffins might act as efficient aft-swept wingtips, reducing the induced drag and increasing the lift-to-drag ratio. A movie is available on-line.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Taichi Igarashi ◽  
Hiroshi Naito ◽  
Koji Fukagata

Flow around a circular cylinder controlled using plasma actuators is investigated by means of direct numerical simulation (DNS). The Reynolds number based on the freestream velocity and the cylinder diameter is set atReD=1000. The plasma actuators are placed at±90° from the front stagnation point. Two types of forcing, that is, two-dimensional forcing and three-dimensional forcing, are examined and the effects of the forcing amplitude and the arrangement of plasma actuators are studied. The simulation results suggest that the two-dimensional forcing is primarily effective in drag reduction. When the forcing amplitude is higher, the mean drag and the lift fluctuations are suppressed more significantly. In contrast, the three-dimensional forcing is found to be quite effective in reduction of the lift fluctuations too. This is mainly due to a desynchronization of vortex shedding. Although the drag reduction rate of the three-dimensional forcing is slightly lower than that of the two-dimensional forcing, considering the power required for the forcing, the three-dimensional forcing is about twice more efficient.


1984 ◽  
Vol 144 ◽  
pp. 445-462 ◽  
Author(s):  
B. G. Newman ◽  
H. T. Low

Experiments have been made on quasi two-dimensional sails of small camber and at small incidence. Four excess-length ratios have been tested at a Reynolds number of 1.2 x 105. The results for lift, tension, centre of lift, maximum camber and its position, and leading- and trailing-edge membrane angles have been compared with existing inviscid theories and show poor agreement in general. This is attributed to leading- and trailing-edge flow separations as indicated by supplementary flow-visualization experiments. The optimum incidences in particular are much greater than the theoretical value of 0°. Luffing occurs at slightly negative incidences and appears to be a dynamic instability. The highest lift-to-drag ratio obtained was 16.5 on a membrane with an excess-length ratio of 0.03.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050370
Author(s):  
Yu-Shan Meng ◽  
Li Yan ◽  
Shi-Bin Li ◽  
Wei Huang

In this study, the drag force and heat flux reduction mechanism induced by the aerodisk (with disks on its nose) with the freestream Mach number being 4.937 has been numerically investigated, and the simulations have been carried out by the three-dimensional Reynolds-averaged Navier–Stokes equations coupled with the SST [Formula: see text] turbulence model. The influence of the angle of attack on the drag and heat flux reduction has been analyzed comprehensively. The obtained results show that the drag force of the spiked blunt body can be reduced by the aerodisk, and the drag force decreases by 24.63%. The flow mechanism of the complex flow is drastically modified by the angle of attack, and this results in a strong flow asymmetry. This asymmetry becomes more and more obvious as the angle of attack increases. Both the pressure force and viscous force increase with the increase of the angle of attack. Moreover, both the lift and drag coefficients increase as the angle of attack increases, and the lift-to-drag ratio increases first and then decreases with the increase of the angle of attack. When the angle of attack is [Formula: see text], the maximum lift-to-drag ratio is close to 0.36.


1999 ◽  
Vol 103 (1027) ◽  
pp. 421-428 ◽  
Author(s):  
H. Babinsky

Abstract An analysis of paraglider performance has revealed that wing section drag is the most significant contribution to overall drag. Wind tunnel measurements performed on two-dimensional hollow models indicate that intake drag is less significant than previously thought. An experimental investigation into the characteristics of a ‘quasi ’ -two-dimensional flexible model consisting of solid ribs covered with a fabric skin was performed at realistic Reynolds numbers. The main cause of performance deterioration was found to be a significant reduction in section lift coefficient when compared to a similar solid wing section. This is believed to be mainly due to two factors: a large trailing edge separation and the deformation of the wing between ribs. The deformation was measured and it was shown that the deformed shape is less capable of generating high lift coefficients than the design section. It is thought that the extent of the trailing edge separation is increased due to the presence of streamwise grooves caused by the shape deformation of the wing. The shape of the separated region was found to be strongly three-dimensional with the separation point being about half a chord-length further upstream along the ribs. A small separation bubble was also observed immediately behind the lip of the intake, due to the fabric ‘flaring’ open. Based on the observations presented a number of suggestions for improved wings have been made.


2020 ◽  
Vol 25 ◽  
pp. 4067
Author(s):  
E. Surkova ◽  
A. Kovács

Right ventricular (RV) performance is an important predictor of adverse events and mortality in patients with cardiovascular diseases. Echocardiography is the first-choice imaging modality for the assessment of RV systolic function, however conventional two-dimensional echocardiographic parameters have important limitations and under specific conditions poorly correlate with the gold-standard imaging modality, cardiac magnetic resonance. Recent advances in novel echocardiography techniques, including three-dimensional echocardiography and two-dimensional speckle-tracking echocardiography opened new era in RV imaging enabling more accurate and reproducible assessment of RV performance thus providing deeper insight into the pathophysiology of this intriguing cardiac chamber. In this comprehensive review authors summarize the state-of-the-art echocardiographic approach to the assessment of the RV systolic function with specific emphasis on modern techniques, their advantages, limitations and pitfalls in the various clinical settings.


Author(s):  
S. Rajat Singh ◽  
Y.D. Dwivedi

The transonic area rule was first implemented in the 1950s. It is an important concept related to the drag on an aircraft or other body in transonic and supersonic flight which states that two airplanes with the same longitudinal cross-sectional area distribution have the same wave drag, independent of how the area is distributed laterally. A swept back delta wing increases the critical Mach number of the wing and performs well at low speeds, as a result of unique swirling vortices that form on the upper surface of the wing. BOOM Supersonic plans to bring back Supersonic Commercial aircrafts by implementing these modifications in the famous Concorde. In this paper two aircraft designs inspired by Concorde and BOOM Overture are compared using ANSYS Fluent. These were designed in CATIA with changes in fuselage dimensions, wing configuration and engine configuration. The lift to drag ratio of both the designs are calculated and compared. Pressure contours, velocity vectors, vector pathlines, turbulence pathlines and pressure pathlines are also compared. The results show that the design with the implementation of transonic area rule and swept back delta wing has a better Lift to Drag ratio when compared to the design with a wide fuselage and a delta wing design.


Sign in / Sign up

Export Citation Format

Share Document