scholarly journals Unsteady Simulation of Transonic Buffet of a Supercritical Airfoil with Shock Control Bump

Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 203
Author(s):  
Yufei Zhang ◽  
Pu Yang ◽  
Runze Li ◽  
Haixin Chen

The unsteady flow characteristics of a supercritical OAT15A airfoil with a shock control bump were numerically studied by a wall-modeled large eddy simulation. The numerical method was first validated by the buffet and nonbuffet cases of the baseline OAT15A airfoil. Both the pressure coefficient and velocity fluctuation coincided well with the experimental data. Then, four different shock control bumps were numerically tested. A bump of height h/c = 0.008 and location xB/c = 0.55 demonstrated a good buffet control effect. The lift-to-drag ratio of the buffet case was increased by 5.9%, and the root mean square of the lift coefficient fluctuation was decreased by 67.6%. Detailed time-averaged flow quantities and instantaneous flow fields were analyzed to demonstrate the flow phenomenon of the shock control bumps. The results demonstrate that an appropriate “λ” shockwave pattern caused by the bump is important for the flow control effect.

Author(s):  
N Kharoua ◽  
L Khezzar

Large eddy simulation of turbulent flow around smooth and rough hemispherical domes was conducted. The roughness of the rough dome was generated by a special approach using quadrilateral solid blocks placed alternately on the dome surface. It was shown that this approach is capable of generating the roughness effect with a relative success. The subgrid-scale model based on the transport of the subgrid turbulent kinetic energy was used to account for the small scales effect not resolved by large eddy simulation. The turbulent flow was simulated at a subcritical Reynolds number based on the approach free stream velocity, air properties, and dome diameter of 1.4 × 105. Profiles of mean pressure coefficient, mean velocity, and its root mean square were predicted with good accuracy. The comparison between the two domes showed different flow behavior around them. A flattened horseshoe vortex was observed to develop around the rough dome at larger distance compared with the smooth dome. The separation phenomenon occurs before the apex of the rough dome while for the smooth dome it is shifted forward. The turbulence-affected region in the wake was larger for the rough dome.


2020 ◽  
Vol 8 (9) ◽  
pp. 728
Author(s):  
Said Alhaddad ◽  
Lynyrd de Wit ◽  
Robert Jan Labeur ◽  
Wim Uijttewaal

Breaching flow slides result in a turbidity current running over and directly interacting with the eroding, submarine slope surface, thereby promoting further sediment erosion. The investigation and understanding of this current are crucial, as it is the main parameter influencing the failure evolution and fate of sediment during the breaching phenomenon. In contrast to previous numerical studies dealing with this specific type of turbidity currents, we present a 3D numerical model that simulates the flow structure and hydrodynamics of breaching-generated turbidity currents. The turbulent behavior in the model is captured by large eddy simulation (LES). We present a set of numerical simulations that reproduce particular, previously published experimental results. Through these simulations, we show the validity, applicability, and advantage of the proposed numerical model for the investigation of the flow characteristics. The principal characteristics of the turbidity current are reproduced well, apart from the layer thickness. We also propose a breaching erosion model and validate it using the same series of experimental data. Quite good agreement is observed between the experimental data and the computed erosion rates. The numerical results confirm that breaching-generated turbidity currents are self-accelerating and indicate that they evolve in a self-similar manner.


2021 ◽  
Author(s):  
Masateru Maeda ◽  
Natsuki Harada ◽  
Hiroto Tanaka

Hydrodynamic performance of a gliding penguin flipper (wing) considering the backward sweep was estimated with computational fluid dynamics (CFD) simulation. A flipper of a gentoo penguin (Pygoscelis papua) was 3D scanned, smoothed, and a numerical fluid mesh was generated. For accurate yet resource-saving computation, an embedded large-eddy simulation (ELES) methods was employed, where the flow near the flipper was solved with large-eddy simulation (LES) and flow far away from the flipper was solved with Reynolds-averaged Navier-Stokes (RANS). The relative flow speed was fixed at 2 m s-1, close to the typical foraging speed for the penguin species. The sweep angle was set to be 0°, 30°, and 60°, while the angle of attack was varied between -40° and 40°, both are within the realistic ranges in the wing kinematics measurement of penguins in an aquarium. It was revealed that a higher sweep angle reduces the lift slope, but the lift coefficient is unchanged at a high angle of attack. Drag coefficient was reduced across the angles of attack with increasing the sweep angles. The drag polars suggest the sweep angle may be adjusted with the change in swimming speed and anhedral (negative dihedral) angle to minimise drag while maintaining the vertical force balance to counteract the positive buoyancy. This will effectively expand the swimming envelope of the gliding penguin, similar to a flying counterpart such as swift.


2019 ◽  
Vol 131 ◽  
pp. 01120
Author(s):  
Lei Wang ◽  
Lu Min Wang ◽  
Yong Li Liu ◽  
Wen Wen Yu ◽  
Guang Rui Qi ◽  
...  

The effect of board bending degree on hydrodynamic performances of a single-layer cambered otter-board was investigated using engineering models in a wind tunnel. Three different bending degree boards were evaluated at a wind speed of 28 m/s. Parameters measured included: drag coefficient Cx, lift coefficient Cy, pitch moment coefficient Cm, center of pressure coefficient Cp , over a range of angle of attack (0° to 70°). These coefficients were used in analyzing the differences in the performance among the three otter-board models. Results showed that the bending of the board(No. 2, No. 3) increased the water resistance of the otter-board, and improved the lift coefficient of the otter-board in the small angle of attack (0°<α≤20 °) ; the maximum lift coefficients Cy of otter-board model (No. 1) was higher (1.680, α = 25°). the maximum lift–drag ratios of models (No. 1, No. 2 and No. 3) are 6.822 (α = 7.5 °), 6.533 (α = 2.5 °) and 6.384 (α = 5.0°), which showed that the board bending reduces the lift-to-drag ratio of the otter-board.The stability of the No. 3 model was better than those two models (No. 1, No. 2) in most range of attack angle, but No. 1 otter-board model had a better stability in roll of otter-board. The findings of this study can offer useful reference data for the structural optimization of otter-boards for trawling.


2017 ◽  
Vol 813 ◽  
pp. 23-52 ◽  
Author(s):  
Rafael Pérez-Torró ◽  
Jae Wook Kim

A numerical investigation on the stalled flow characteristics of a NACA0021 aerofoil with a sinusoidal wavy leading edge (WLE) at chord-based Reynolds number $Re_{\infty }=1.2\times 10^{5}$ and angle of attack $\unicode[STIX]{x1D6FC}=20^{\circ }$ is presented in this paper. It is observed that laminar separation bubbles (LSBs) form at the trough areas of the WLE in a collocated fashion rather than uniformly/periodically distributed over the span. It is found that the distribution of LSBs and their influence on the aerodynamic forces is strongly dependent on the spanwise domain size of the simulation, i.e. the wavenumber of the WLE used. The creation of a pair of counter-rotating streamwise vortices from the WLE and their evolution as an interface/buffer between the LSBs and the adjacent fully separated shear layers are discussed in detail. The current simulation results confirm that an increased lift and a decreased drag are achieved by using the WLEs compared to the straight leading edge (SLE) case, as observed in previous experiments. Additionally, the WLE cases exhibit a significantly reduced level of unsteady fluctuations in aerodynamic forces at the frequency of periodic vortex shedding. The beneficial aerodynamic characteristics of the WLE cases are attributed to the following three major events observed in the current simulations: (i) the appearance of a large low-pressure zone near the leading edge created by the LSBs; (ii) the reattachment of flow behind the LSBs resulting in a decreased volume of the rear wake; and, (iii) the deterioration of von-Kármán (periodic) vortex shedding due to the breakdown of spanwise coherent structures.


2019 ◽  
Vol 9 (18) ◽  
pp. 3696 ◽  
Author(s):  
Víctor Hidalgo ◽  
Xavier Escaler ◽  
Esteban Valencia ◽  
Xiaoxing Peng ◽  
José Erazo ◽  
...  

The present paper focuses on the numerical simulation of unsteady cavitation around a NACA66 hydrofoil to improve the understanding of the cavitation effects on hydraulic machinery. For this aim, the Zwart–Gerber–Belamri cavitation model was updated and uploaded as a library file for OpenFOAM’s solvers using C++ language. Furthermore, the hybrid Reynold average Navier–Stokes (RANS)–large eddy simulation (LES) model k - ω SST scale adaptive simulation (SAS) was implemented as a turbulence model for the present study of scale adaptive simulation. For validation, numerical results were compared with experimental results obtained by Leroux at the Naval Academy Research Institute in France. In order to highlight the benefits in terms of computational consumption and reproduction of the phenomenon the k - ω SST SAS model was compared against implicit large eddy simulation (ILES). Results show that the cavitation evolution including the maximum vapor length, the detachment and the oscillation frequency were reproduced satisfactorily using k - ω SST SAS. Moreover, k - ω SST SAS results predicted a lower total vapor volume on time than ILES, which is related to observed pulses of pressure coefficient, C p , and those match fairly well with the experimental results. To summarize, the k - ω SST SAS model predicts with good accuracy unsteady cavitation behavior around hydrofoils and shows improved versatility over the ILES approach.


Sign in / Sign up

Export Citation Format

Share Document