An Experimental Investigation of a Wing-Fuselage Junction Model in the NASA Langley 14- by 22-Foot Subsonic Wind Tunnel

Author(s):  
Michael A. Kegerise ◽  
Dan Neuhart ◽  
Judith Hannon ◽  
Christopher L. Rumsey
Author(s):  
R. Sankarakrishnan ◽  
K. A. Sallam ◽  
F. W. Chambers

An experimental investigation of the effects of turbulence on primary breakup of round liquid jets subjected to gaseous crossflow is described. The paper investigates the effects of partial degrees of turbulence development in the liquid. Measurements of the properties of primary breakup were obtained using double-pulsed shadowgraphy in a subsonic wind tunnel having a test section of 0.3 m × 0.3 m × 0.6 m. Measurements included primary breakup regimes, conditions required for the onset of breakup, ligament properties along the liquid surface, drop size and velocity distributions after breakup along the liquid surface, conditions required for breakup of the liquid jet as a whole, and liquid jet trajectories.


Author(s):  
Srikanth G, ◽  
Surendra Bogadi

An extensive experimental study is conducted to examine the potentiality of Multi-Winglets (similar to bird tip feathers) for the reduction of Induced Drag, improved CL without increase in span of aircraft wing. The model composed of a rectangular wing built from NACA 0015 airfoil constituted of three winglets, which are small wings without sweep & twist. The test conducted in subsonic wind tunnel at flow speed 20m/s and placing the wing at angle of attack ranging from -5 to +15 deg. And also the wing with no winglet (bare wing) and with single winglet also tested in the same condition as in the case of three winglets (multi-winglet). Wind tunnel balances provided lift measurements and tuft flow visualization obtained wingtip vortex information. The results show that multi-winglet system reduced induced drag by 27.9% and improved CL by 26.5% compare to bare wing.


2021 ◽  
Vol 21 (2) ◽  
pp. 111-116
Author(s):  
I Putu Gede Sopan Rahtika ◽  
◽  
I Made Suarta ◽  
I Komang Rusmariadi ◽  
Putu Wijaya Sunu ◽  
...  

The application of flat plates to the field of wind harvesting requires a lot of research toward the understanding of the flutter behavior of the plates. There are shortages of articles that discuss the effect of varying the angles of attack to the flutter speed of a flat plate. This research aims to conduct a basic experimental research on the effect of relative position of a thin-flat plates to the direction of the air flow to its flutter speed. In this study, a thin-flat plate was placed in a subsonic wind tunnel to test its flutter speed. The position of the plate was varied in various angles of attack. The effect of the angles of attack to the flutter speed was observed.


1935 ◽  
Vol 39 (295) ◽  
pp. 619-632
Author(s):  
TH. Von karman ◽  
Clark B. Millikan

The problem of the maximum lift of airfoils has concerned the authors greatly since there were first discovered in the spring of 1932 serious discrepancies in this characteristic between results obtained in the wind tunnel of the Guggenheim Aeronautics Laboratory at the California Institute of Technology (GALCIT) and those reported from certain other wind tunnels. An elaborate experimental investigation by the junior author and A. L. Klein indicated that the value of CLmax for a given airfoil was strongly affected both by Reynolds number and by the degree of turbulence in the tunnel wind stream.


Sign in / Sign up

Export Citation Format

Share Document