Application of Digital Twin for Gas Turbine Off-Design Performance and Operation Analyses

Author(s):  
Leonid Moroz ◽  
Maksym Burlaka ◽  
Valentyn Barannik
2021 ◽  
pp. 5-16
Author(s):  
Yu.М. Temis ◽  
A.V. Solovjeva ◽  
Yu.N. Zhurenkov ◽  
A.N. Startsev ◽  
M.Yu. Temis ◽  
...  

2021 ◽  
Author(s):  
Senthil Krishnababu ◽  
Omar Valero ◽  
Roger Wells

Abstract Data driven technologies are revolutionising the engineering sector by providing new ways of performing day to day tasks through the life cycle of a product as it progresses through manufacture, to build, qualification test, field operation and maintenance. Significant increase in data transfer speeds combined with cost effective data storage, and ever-increasing computational power provide the building blocks that enable companies to adopt data driven technologies such as data analytics, IOT and machine learning. Improved business operational efficiency and more responsive customer support provide the incentives for business investment. Digital twins, that leverages these technologies in their various forms to converge physics and data driven models, are therefore being widely adopted. A high-fidelity multi-physics digital twin, HFDT, that digitally replicates a gas turbine as it is built based on part and build data using advanced component and assembly models is introduced. The HFDT, among other benefits enables data driven assessments to be carried out during manufacture and assembly for each turbine allowing these processes to be optimised and the impact of variability or process change to be readily evaluated. On delivery of the turbine and its associated HFDT to the service support team the HFDT supports the evaluation of in-service performance deteriorations, the impact of field interventions and repair and the changes in operating characteristics resulting from overhaul and turbine upgrade. Thus, creating a cradle to grave physics and data driven twin of the gas turbine asset. In this paper, one branch of HFDT using a power turbine module is firstly presented. This involves simultaneous modelling of gas path and solid using high fidelity CFD and FEA which converts the cold geometry to hot running conditions to assess the impact of various manufacturing and build variabilities. It is shown this process can be executed within reasonable time frames enabling creation of HFDT for each turbine during manufacture and assembly and for this to be transferred to the service team for deployment during field operations. Following this, it is shown how data driven technologies are used in conjunction with the HFDT to improve predictions of engine performance from early build information. The example shown, shows how a higher degree of confidence is achieved through the development of an artificial neural network of the compressor tip gap feature and its effect on overall compressor efficiency.


Author(s):  
Leonid Moroz ◽  
Maksym Burlaka ◽  
Tishun Zhang ◽  
Olga Altukhova

Abstract To date variety of supercritical CO2 cycles were proposed by numerous authors. Multiple small-scale tests performed, and a lot of supercritical CO cycle aspects studied. Currently, 3-10 MW-scale test facilities are being built. However, there are still several pieces of SCO2 technology with the Technology Readiness Level (TRL) 3-5 and system modeling is one of them. The system modeling approach shall be sufficiently accurate and flexible, to be able to precisely predict the off-design and part-load operation of the cycle at both supercritical and condensing modes with diverse control strategies. System modeling itself implies the utilization of component models which are often idealized and may not provide a sufficient level of fidelity. Especially for prediction of off-design and part load supercritical CO2 cycle performance with near-critical compressor and transition to condensing modes with lower ambient temperatures, and other aspects of cycle operation under alternating grid demands and ambient conditions. In this study, the concept of a digital twin to predict off-design supercritical CO2 cycle performance is utilized. In particular, with the intent to have sufficient cycle simulation accuracy and flexibility the cycle simulation system with physics-based methods/modules were created for the bottoming 15.5 MW Power Generation Unit (PGU). The heat source for PGU is GE LM6000-PH DLE gas turbine. The PGU is a composite (merged) supercritical CO2 cycle with a high heat recovery rate, its design and the overall scheme are described in detail. The calculation methods utilized at cycle level and components’ level, including loss models with an indication of prediction accuracy, are described. The flowchart of the process of off-design performance estimation and data transfer between the modules as well. The comparison of the results obtained utilizing PGU digital twin with other simplified approaches is performed. The results of the developed digital twin utilization to optimize cycle control strategies and parameters to improve off-design cycle performance are discussed in detail.


2021 ◽  
Author(s):  
Maksym Burlaka ◽  
Olga Altukhova ◽  
Leonid Moroz ◽  
Tishun Zhang

Author(s):  
K. Nakanishi ◽  
T. Watanabe ◽  
S. Yamazaki

This paper outlines the development process of the centrifugal compressor of the Nissan vehicular gas turbine YTP12 The compressor should provide a solid performance as a component of a vehicular prime mover. As we have managed to achieve the design performance by modifying the components of the compressor within the limited sphere permitted by the dimensions of a given engine, this paper will cover the key processes of improvement, as well as some additional information which may be applicable to future compressor designs.


Energy ◽  
2019 ◽  
Vol 178 ◽  
pp. 386-399 ◽  
Author(s):  
Yongping Yang ◽  
Ziwei Bai ◽  
Guoqiang Zhang ◽  
Yongyi Li ◽  
Ziyu Wang ◽  
...  

1994 ◽  
Vol 14 (2) ◽  
pp. 153-163 ◽  
Author(s):  
Tong Seop Kim ◽  
Chang Hoon Oh ◽  
Sung Tack Ro

Sign in / Sign up

Export Citation Format

Share Document