AI Assisted High Fidelity Multi-Physics Digital Twin of Industrial Gas Turbines

2021 ◽  
Author(s):  
Senthil Krishnababu ◽  
Omar Valero ◽  
Roger Wells

Abstract Data driven technologies are revolutionising the engineering sector by providing new ways of performing day to day tasks through the life cycle of a product as it progresses through manufacture, to build, qualification test, field operation and maintenance. Significant increase in data transfer speeds combined with cost effective data storage, and ever-increasing computational power provide the building blocks that enable companies to adopt data driven technologies such as data analytics, IOT and machine learning. Improved business operational efficiency and more responsive customer support provide the incentives for business investment. Digital twins, that leverages these technologies in their various forms to converge physics and data driven models, are therefore being widely adopted. A high-fidelity multi-physics digital twin, HFDT, that digitally replicates a gas turbine as it is built based on part and build data using advanced component and assembly models is introduced. The HFDT, among other benefits enables data driven assessments to be carried out during manufacture and assembly for each turbine allowing these processes to be optimised and the impact of variability or process change to be readily evaluated. On delivery of the turbine and its associated HFDT to the service support team the HFDT supports the evaluation of in-service performance deteriorations, the impact of field interventions and repair and the changes in operating characteristics resulting from overhaul and turbine upgrade. Thus, creating a cradle to grave physics and data driven twin of the gas turbine asset. In this paper, one branch of HFDT using a power turbine module is firstly presented. This involves simultaneous modelling of gas path and solid using high fidelity CFD and FEA which converts the cold geometry to hot running conditions to assess the impact of various manufacturing and build variabilities. It is shown this process can be executed within reasonable time frames enabling creation of HFDT for each turbine during manufacture and assembly and for this to be transferred to the service team for deployment during field operations. Following this, it is shown how data driven technologies are used in conjunction with the HFDT to improve predictions of engine performance from early build information. The example shown, shows how a higher degree of confidence is achieved through the development of an artificial neural network of the compressor tip gap feature and its effect on overall compressor efficiency.

Author(s):  
Rakesh Yadav ◽  
Ishan Verma ◽  
Abhijit Modak ◽  
Shaoping Li

Abstract Flamelet Generated Manifold (FGM) has proven to be an efficient approach to model turbulent combustion across different regimes of combustion. The manifolds are generally created by solving laminar premixed or opposed flow configurations. Gas turbine combustors often involve many strong non-adiabatic events such as multiple temperature boundaries, quenching from cooling and effusion holes, conjugate heat transfer, soot radiation interaction, phase change from spray and the modulation of inlet conditions. The adiabatic assumption of the underlying flamelet generation in the FGM is, therefore, prone to errors in the prediction of flame speed, liner temperatures, and pollutant formation. In this work, a novel approach to generate fully non-adiabatic manifold is proposed and validated. The FGM manifold is created using a series of non-adiabatic flamelets, each flamelet is solved in one-dimensional physical space. The non-adiabatic flamelets are generated with an optimal combination of freely propagating and burner stabilized flames. This hybrid method of the flamelet configuration allows modeling large heat gain and loss without encountering any unrealistic temperature in the flamelet solution. Such fully non-adiabatic flamelets are then convoluted to generate a five-dimensional Non-adiabatic Flamelet Generated Manifold (NFGM) Probability Density Function (PDF.). The average properties such as temperature, mixture density, species concentration, rate of reaction, etc. from PDF are then coupled with the CFD solution. The non-adiabatic flamelets and corresponding NFGM is implemented into ANSYS Fluent software version 2020R1. This approach is validated first for canonical cases, followed by gas turbine like conditions of swirl stabilized methane fueled turbulent flame, developed at DLR Stuttgart as the PRECCINSTA combustor. The experimental data for this combustor is available for multiple operating conditions. A stable operating point (φ = 0.83, P = 30 kW) is chosen. The proposed nonadiabatic NFGM is used with Stress blended eddy simulation (SBES). The current NFGM-SBES results are compared with experimental data as well as the previously published works. The impact of modeling heat release in flamelet is used to analyze the M-shape versus V-shape flame transition and the peaks of the carbon monoxide in mixing shear layers. The findings from the current work, in terms of accuracy, validity and best practices while modeling NFGM-SBES are discussed and summarized. The improved results of NFGM compared to adiabatic FGM are encouraging and provides a potential high-fidelity tool for accurate, yet efficient modeling of turbulent combustion inside gas turbines.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


2021 ◽  
Author(s):  
Zhitao Wang ◽  
Jiayi Ma ◽  
Haichao Yu ◽  
Tielei Li

Abstract The combined gas turbine and gas turbine power propulsion device (COGAG power propulsion device) is an advanced combined power system, which uses multiple gas turbines as the main engine to drive propellers to propel the ship. COGAG power propulsion device has high power density, excellent stability and maneuverability, it receives more and more attention in the field of ship power at home and abroad. This article takes the COGAG power propulsion device as the research object, uses simulation methods to study its steady-state operating characteristics, and conducts a ship-engine-propeller optimization matching analysis based on economy and maneuverability. The research work carried out in this article is as follows. Firstly, according to the structural relationship between the various components and the system thermal cycle mode of the COGAG power propulsion device, establish the controller, main engine, gear box, clutch, shafting, propeller, ship and other components and simulation models of the system with the modular modeling idea. Secondly, divide the gears according to ship speed. For the four working modes of single-gas turbine with load, dual-gas turbine with load, three-gas turbine with load, and four-gas turbine with load, analysis the ship-engine-propeller optimization matching of the COGAG power propulsion device based on economy and maneuverability, and calculate the best shaft speed and propeller pitch ratio in each gear, so as to obtain the steady-state operation characteristics of the COGAG power propulsion device based on the ship-engine-propeller matching, which provides a basis for determining the target parameters of the dynamic process.


2002 ◽  
Vol 128 (3) ◽  
pp. 506-517 ◽  
Author(s):  
S. M. Camporeale ◽  
B. Fortunato ◽  
M. Mastrovito

A high-fidelity real-time simulation code based on a lumped, nonlinear representation of gas turbine components is presented. The code is a general-purpose simulation software environment useful for setting up and testing control equipments. The mathematical model and the numerical procedure are specially developed in order to efficiently solve the set of algebraic and ordinary differential equations that describe the dynamic behavior of gas turbine engines. For high-fidelity purposes, the mathematical model takes into account the actual composition of the working gases and the variation of the specific heats with the temperature, including a stage-by-stage model of the air-cooled expansion. The paper presents the model and the adopted solver procedure. The code, developed in Matlab-Simulink using an object-oriented approach, is flexible and can be easily adapted to any kind of plant configuration. Simulation tests of the transients after load rejection have been carried out for a single-shaft heavy-duty gas turbine and a double-shaft aero-derivative industrial engine. Time plots of the main variables that describe the gas turbine dynamic behavior are shown and the results regarding the computational time per time step are discussed.


Author(s):  
Jacob E. Rivera ◽  
Robert L. Gordon ◽  
Mohsen Talei ◽  
Gilles Bourque

Abstract This paper reports on an optimisation study of the CO turndown behaviour of an axially staged combustor, in the context of industrial gas turbines (GT). The aim of this work is to assess the optimally achievable CO turndown behaviour limit given system and operating characteristics, without considering flow-induced behaviours such as mixing quality and flame spatial characteristics. To that end, chemical reactor network modelling is used to investigate the impact of various system and operating conditions on the exhaust CO emissions of each combustion stage, as well as at the combustor exit. Different combustor residence time combinations are explored to determine their contribution to the exhaust CO emissions. The two-stage combustor modelled in this study consists of a primary (Py) and a secondary (Sy) combustion stage, followed by a discharge nozzle (DN), which distributes the exhaust to the turbines. The Py is modelled using a freely propagating flame (FPF), with the exhaust gas extracted downstream of the flame front at a specific location corresponding to a specified residence time (tr). These exhaust gases are then mixed and combusted with fresh gases in the Sy, modelled by a perfectly stirred reactor (PSR) operating within a set tr. These combined gases then flow into the DN, which is modelled by a plug flow reactor (PFR) that cools the gas to varying combustor exit temperatures within a constrained tr. Together, these form a simplified CRN model of a two-stage, dry-low emissions (DLE) combustion system. Using this CRN model, the impact of the tr distribution between the Py, Sy and DN is explored. A parametric study is conducted to determine how inlet pressure (Pin), inlet temperature (Tin), equivalence ratio (ϕ) and Py-Sy fuel split (FS), individually impact indicative CO turndown behaviour. Their coupling throughout engine load is then investigated using a model combustor, and its effect on CO turndown is explored. Thus, this aims to deduce the fundamental, chemically-driven parameters considered to be most important for identifying the optimal CO turndown of GT combustors. In this work, a parametric study and a model combustor study are presented. The parametric study consists of changing a single parameter at a time, to observe the independent effect of this change and determine its contribution to CO turndown behaviour. The model combustor study uses the same CRN, and varies the parameters simultaneously to mimic their change as an engine moves through its steady-state power curve. The latter study thus elucidates the difference in CO turndown behaviour when all operating conditions are coupled, as they are in practical engines. The results of this study aim to demonstrate the parameters that are key for optimising and improving CO turndown.


Author(s):  
R. Friso ◽  
N. Casari ◽  
M. Pinelli ◽  
A. Suman ◽  
F. Montomoli

Abstract Gas turbines (GT) are often forced to operate in harsh environmental conditions. Therefore, the presence of particles in their flow-path is expected. With this regard, deposition is a problem that severely affects gas turbine operation. Components’ lifetime and performance can dramatically vary as a consequence of this phenomenon. Unfortunately, the operating conditions of the machine can vary in a wide range, and they cannot be treated as deterministic. Their stochastic variations greatly affect the forecasting of life and performance of the components. In this work, the main parameters considered affected by the uncertainty are the circumferential hot core location and the turbulence level at the inlet of the domain. A stochastic analysis is used to predict the degradation of a high-pressure-turbine (HPT) nozzle due to particulate ingestion. The GT’s component analyzed as a reference is the HPT nozzle of the Energy-Efficient Engine (E3). The uncertainty quantification technique used is the probabilistic collocation method (PCM). This work shows the impact of the operating conditions uncertainties on the performance and lifetime reduction due to deposition. Sobol indices are used to identify the most important parameter and its contribution to life. The present analysis enables to build confidence intervals on the deposit profile and on the residual creep-life of the vane.


Author(s):  
Weimar Mantilla ◽  
José García ◽  
Rafael Guédez ◽  
Alessandro Sorce

Abstract Under new scenarios with high shares of variable renewable electricity, combined cycle gas turbines (CCGT) are required to improve their flexibility, in terms of ramping capabilities and part-load efficiency, to help balance the power system. Simultaneously, liberalization of electricity markets and the complexity of its hourly price dynamics are affecting the CCGT profitability, leading the need for optimizing its operation. Among the different possibilities to enhance the power plant performance, an inlet air conditioning unit (ICU) offers the benefit of power augmentation and “minimum environmental load” (MEL) reduction by controlling the gas turbine inlet temperature using cold thermal energy storage and a heat pump. Consequently, an evaluation of a CCGT integrated with this inlet conditioning unit including a day-ahead optimized operation strategy was developed in this study. To establish the hourly dispatch of the power plant and the operation mode of the inlet conditioning unit to either cool down or heat up the gas turbine inlet air, a mixed-integer linear optimization (MILP) was formulated using MATLAB, aiming to maximize the operational profit of the plant within a 24-hours horizon. To assess the impact of the proposed unit operating under this dispatch strategy, historical data of electricity and natural gas prices, as well as meteorological data and CO2 emission allowances price, have been used to perform annual simulations of a reference power plant located in Turin, Italy. Furthermore, different equipment capacities and parameters have been investigated to identify trends of the power plant performance. Lastly, a sensitivity analysis on market conditions to test the control strategy response was also considered. Results indicate that the inlet conditioning unit, together with the dispatch optimization, increases the power plant’s operational profit by achieving a wider operational range, particularly important during peak and off-peak periods. For the specific case study, it is estimated that the net present value of the CCGT integrated with the ICU is 0.5% higher than the power plant without the unit. In terms of technical performance, results show that the unit reduces the minimum environmental load by approximately 1.34% and can increase the net power output by 0.17% annually.


Author(s):  
Valentina Zaccaria ◽  
Alberto Traverso ◽  
David Tucker

The theoretical efficiencies of gas turbine fuel cell hybrid systems make them an ideal technology for the future. Hybrid systems focus on maximizing the utilization of existing energy technologies by combining them. However, one pervasive limitation that prevents the commercialization of such systems is the relatively short lifetime of fuel cells, which is due in part to several degradation mechanisms. In order to improve the lifetime of hybrid systems and to examine long-term stability, a study was conducted to analyze the effects of electrochemical degradation in a solid oxide fuel cell (SOFC) model. The SOFC model was developed for hardware-in-the-loop simulation with the constraint of real-time operation for coupling with turbomachinery and other system components. To minimize the computational burden, algebraic functions were fit to empirical relationships between degradation and key process variables: current density, fuel utilization, and temperature. Previous simulations showed that the coupling of gas turbines and SOFCs could reduce the impact of degradation as a result of lower fuel utilization and more flexible current demands. To improve the analytical capability of the model, degradation was incorporated on a distributed basis to identify localized effects and more accurately assess potential failure mechanisms. For syngas fueled systems, the results showed that current density shifted to underutilized sections of the fuel cell as degradation progressed. Over-all, the time to failure was increased, but the temperature difference along cell was increased to unacceptable levels, which could not be determined from the previous approach.


Author(s):  
Dale Grace ◽  
Thomas Christiansen

Unexpected outages and maintenance costs reduce plant availability and can consume significant resources to restore the unit to service. Although companies may have the means to estimate cash flow requirements for scheduled maintenance and on-going operations, estimates for unplanned maintenance and its impact on revenue are more difficult to quantify, and a large fleet is needed for accurate assessment of its variability. This paper describes a study that surveyed 388 combined-cycle plants based on 164 D/E-class and 224 F-class gas turbines, for the time period of 1995 to 2009. Strategic Power Systems, Inc. (SPS®), manager of the Operational Reliability Analysis Program (ORAP®), identified the causes and durations of forced outages and unscheduled maintenance and established overall reliability and availability profiles for each class of plant in 3 five-year time periods. This study of over 3,000 unit-years of data from 50 Hz and 60 Hz combined-cycle plants provides insight into the types of events having the largest impact on unplanned outage time and cost, as well as the risks of lost revenue and unplanned maintenance costs which affect plant profitability. Outage events were assigned to one of three subsystems: the gas turbine equipment, heat recovery steam generator (HRSG) equipment, or steam turbine equipment, according to the Electric Power Research Institute’s Equipment Breakdown Structure (EBS). Costs to restore the unit to service for each main outage cause were estimated, as were net revenues lost due to unplanned outages. A statistical approach to estimated costs and lost revenues provides a risk-based means to quantify the impact of unplanned events on plant cash flow as a function of class of gas turbine, plant subsystem, and historical timeframe. This statistical estimate of the costs of unplanned outage events provides the risk-based assessment needed to define the range of probable costs of unplanned events. Results presented in this paper demonstrate that non-fuel operation and maintenance costs are increased by roughly 8% in a typical combined-cycle power plant due to unplanned maintenance events, but that a wide range of costs can occur in any single year.


Author(s):  
Raik C. Orbay ◽  
Magnus Genrup ◽  
Pontus Eriksson ◽  
Jens Klingmann

When low calorific value gases are fired, the performance and stability of gas turbines may deteriorate due to a large amount of inertballast and changes in working fluid properties. Since it is rather rare to have custom-built gas turbines for low lower heating value (LHV) operation, the engine will be forced to operate outside its design envelope. This, in turn, poses limitations to usable fuel choices. Typical restraints are decrease in Wobbe index and surge and flutter margins for turbomachinery. In this study, an advanced performance deck has been used to quantify the impact of firing low-LHV gases in a generic-type recuperated as well as unrecuperated gas turbine. A single-shaft gas turbine characterized by a compressor and an expander map is considered. Emphasis has been put on predicting the off-design behavior. The combustor is discussed and related to previous experiments that include investigation of flammability limits, Wobbe index, flame position, etc. The computations show that at constant turbine inlet temperature, the shaft power and the pressure ratio will increase; however, the surge margin will decrease. Possible design changes in the component level are also discussed. Aerodynamic issues (and necessary modifications) that can pose severe limitations on the gas turbine compressor and turbine sections are discussed. Typical methods for axial turbine capacity adjustment are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document