scholarly journals Parameter Adaptive Terminal Sliding Mode Control of Flexible Coupling Air-Breathing Hypersonic Vehicle

2020 ◽  
Author(s):  
Hengxian Jin ◽  
Haibing Chen ◽  
Wei Lin ◽  
Cheng Xu
Author(s):  
Xiaoqian Yang ◽  
Jian Li ◽  
Yi Dong

A new control scheme for flexible air-breathing hypersonic vehicle is designed in this paper based on non-singular fast terminal sliding mode control and nonlinear disturbance observer. The proposed control scheme is derived from basic back-stepping method, which is capable of handling the higher-order nonlinear system, and a novel terminal sliding mode control method is designed for the last step to promise the finite time convergence and improve the steady-state precision. Meanwhile, a command filter is used to avoid the “explosion of complexity” in traditional back-stepping method. To overcome inevitable uncertainties as well as cross couplings between flexible and rigid modes, NDO is introduced to estimate diverse uncertainties. Thus flexible modes and uncertainties can be suppressed simultaneously. The convergence of overall closed-loop system states is proved via Lyapunov analysis. Numerical simulations show the effectiveness and advantages of the proposed control strategy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247228
Author(s):  
Kai Zhou ◽  
Chengxiang Yuan ◽  
Dongyang Sun ◽  
Ningzhi Jin ◽  
Xiaogang Wu

The poor dynamic performance problem of a Full-Bridge converter under a traditional control strategy is investigated in this study. A new parameter adaptive terminal sliding mode control policy is developed for a Full-Bridge DC-DC converter, by combining the integral part with the power function and differential function in the design of the sliding surface. In theory, the steady-state error of the system can approach zero within a short time. To manage the un-ideal situation after using a fixed value of power γ, an improved γ adaptive algorithm is proposed. The system output is tracked and γ is adjusted in real time. The effect of the system can be guaranteed always in an optimal state. Finally, simulation results are provided to verify the performance of the proposed design method under different conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Haibing Chen ◽  
Wei Lin ◽  
Tielin Ma ◽  
Hengxian Jin ◽  
Cheng Xu

The highly nonlinear and coupling characteristics of a flexible air-breathing hypersonic vehicle create great challenges to its flight control design. A unique parameter adaptive nonsingular terminal sliding mode method is proposed for longitudinal control law design of a flexible coupling air-breathing hypersonic vehicle. This method uses adaptive reaching law gain instead of the additional adaptive compensation term to handle the uncertainty to improve robustness. The stability of the close loop system is proved via a Lyapunov way. The longitudinal tracking control law for velocity and angle of attack is designed based on a rigid dynamic model of a flexible air-breathing hypersonic vehicle. A strong coupling model of the same vehicle, considering aerodynamic-scramjet engine-flight dynamic-elastic couplings, is established as the verification platform of the designed control law. The remarkable differences of flight dynamic characteristics between this strong coupling model and the rigid body model can be seen, which mean the controller needs to endure very great uncertainty, unmodeled dynamics, and other types of internal disturbance. Simulation results based on the coupling model demonstrate that the designed control law has good performance and acceptable robustness.


Sign in / Sign up

Export Citation Format

Share Document