Unsteady Numerical Simulation on Angle-of-Attack Effects of Tractor-Propeller/Wing and Pusher-Propeller/Wing Interactions

Author(s):  
Yoshikatsu Furusawa ◽  
Keiichi Kitamura
AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1223-1229
Author(s):  
Ge-Cheng Zha ◽  
Doyle Knight ◽  
Donald Smith ◽  
Martin Haas

Author(s):  
Huishe Wang ◽  
Qingjun Zhao ◽  
Xiaolu Zhao ◽  
Jianzhong Xu

A detailed unsteady numerical simulation has been carried out to investigate the shock systems in the high pressure (HP) turbine rotor and unsteady shock-wake interaction between coupled blade rows in a 1+1/2 counter-rotating turbine (VCRT). For the VCRT HP rotor, due to the convergent-divergent nozzle design, along almost all the span, fishtail shock systems appear after the trailing edge, where the pitch averaged relative Mach number is exceeding the value of 1.4 and up to 1.5 approximately (except the both endwalls). A group of pressure waves create from the suction surface after about 60% axial chord in the VCRT HP rotor, and those waves interact with the inner-extending shock (IES). IES first impinges on the next HP rotor suction surface and its echo wave is strong enough and cannot be neglected, then the echo wave interacts with the HP rotor wake. Strongly influenced by the HP rotor wake and LP rotor, the HP rotor outer-extending shock (OES) varies periodically when moving from one LP rotor leading edge to the next. In VCRT, the relative Mach numbers in front of IES and OES are not equal, and in front of IES, the maximum relative Mach number is more than 2.0, but in front of OES, the maximum relative Mach number is less than 1.9. Moreover, behind IES and OES, the flow is supersonic. Though the shocks are intensified in VCRT, the loss resulted in by the shocks is acceptable, and the HP rotor using convergent-divergent nozzle design can obtain major benefits.


Author(s):  
Phoi-Tack Lew ◽  
Alireza Najafiyazdi ◽  
Luc G. Mongeau ◽  
Stephen Colavincenzo ◽  
Robby Lapointe ◽  
...  

2015 ◽  
Vol 741 ◽  
pp. 509-512
Author(s):  
Guo Ping Li ◽  
Ke Ke Gao ◽  
Ke Yang ◽  
Yong Hui Xie

The unsteady flow parameters in control stage of partial admission are analyzed in details with full 3-D numerical simulation. The full annulus structure of air turbine in partial admission is modeled due to the unsymmetrical geometry. The partial admission is accomplished through the inlet blocked using segmental arc. The unsteady surface pressure changes of eight blades in the transition regions which demonstrate the power output ability are presented. That the entropy rise associated with the losses at different cross mainly caused by mixing losses and flow separation in partial admission is analyzed to estimate the efficiency distribution.


2013 ◽  
Vol 397-400 ◽  
pp. 218-221
Author(s):  
Nan Zhang ◽  
Yue Zhang

The paper introduce structured grid division, use CFD numerical simulation and FLUNET software to conduct the simulation calculation for the hinge moment of rudder. To illustrate the problem, we select two unused plane airfoil An axis-symmetric rudder, one for the special design of the plane rudder. Calculated at 0.4 ~ 1.8Ma, different rudder angle, angle of attack different hinge moment value, and compare them ultimately come to a flat airfoil optimization program, making the steering hinge moment to meet the indicators proposed.


2019 ◽  
Vol 85 ◽  
pp. 02005
Author(s):  
Gelu Muscă ◽  
George Mădălin Chitaru ◽  
Costin Ioan Coşoiu ◽  
Cătalin Nae

Computational Fluid dynamics (CFD) is the science that evolves rapidly in numerical solving of fluid motion equations to produce quantitative results and analyses of phenomena encountered in the fluid flow. When properly used, CFD is often ideal for parameterization studies or physical significance investigations of flow that would otherwise be impossible to replicate through theoretical or experimental tests. The aim of this paper is the study of the turbulent airflow and how the vortices formed in turbulent airflow are influenced by the evolution of the hydraulic characteristics of the fluid flow. Unsteady numerical simulation were performed using Reynolds Average Navier-Stokes (RANS) turbulence model adapted to conventional flow into a pipe with variable section which was implemented in the ANSYS FLUENT expert software.


Sign in / Sign up

Export Citation Format

Share Document