Flow Field and Power Balance of a Distributed Aft-fuselage Boundary Layer Ingesting Aircraft

Author(s):  
Tze Sing Tse ◽  
Cesare A. Hall
2014 ◽  
Vol 554 ◽  
pp. 717-723
Author(s):  
Reza Abbasabadi Hassanzadeh ◽  
Shahab Shariatmadari ◽  
Ali Chegeni ◽  
Seyed Alireza Ghazanfari ◽  
Mahdi Nakisa

The present study aims to investigate the optimized profile of the body through minimizing the Drag coefficient in certain Reynolds regime. For this purpose, effective aerodynamic computations are required to find the Drag coefficient. Then, the computations should be coupled thorough an optimization process to obtain the optimized profile. The aerodynamic computations include calculating the surrounding potential flow field of an object, calculating the laminar and turbulent boundary layer close to the object, and calculating the Drag coefficient of the object’s body surface. To optimize the profile, indirect methods are used to calculate the potential flow since the object profile is initially amorphous. In addition to the indirect methods, the present study has also used axial singularity method which is more precise and efficient compared to other methods. In this method, the body profile is not optimized directly. Instead, a sink-and-source singularity distribution is used on the axis to model the body profile and calculate the relevant viscose flow field.


Author(s):  
Chunill Hah ◽  
Douglas C. Rabe ◽  
Thomas J. Sullivan ◽  
Aspi R. Wadia

The effects of circumferential distortions in inlet total pressure on the flow field in a low-aspect-ratio, high-speed, high-pressure-ratio, transonic compressor rotor are investigated in this paper. The flow field was studied experimentally and numerically with and without inlet total pressure distortion. Total pressure distortion was created by screens mounted upstream from the rotor inlet. Circumferential distortions of 8 periods per revolution were investigated at two different rotor speeds. The unsteady blade surface pressures were measured with miniature pressure transducers mounted in the blade. The flow fields with and without inlet total pressure distortion were analyzed numerically by solving steady and unsteady forms of the Reynolds-averaged Navier-Stokes equations. Steady three-dimensional viscous flow calculations were performed for the flow without inlet distortion while unsteady three-dimensional viscous flow calculations were used for the flow with inlet distortion. For the time-accurate calculation, circumferential and radial variations of the inlet total pressure were used as a time-dependent inflow boundary condition. A second-order implicit scheme was used for the time integration. The experimental measurements and the numerical analysis are highly complementary for this study because of the extreme complexity of the flow field. The current investigation shows that inlet flow distortions travel through the rotor blade passage and are convected into the following stator. At a high rotor speed where the flow is transonic, the passage shock was found to oscillate by as much as 20% of the blade chord, and very strong interactions between the unsteady passage shock and the blade boundary layer were observed. This interaction increases the effective blockage of the passage, resulting in an increased aerodynamic loss and a reduced stall margin. The strong interaction between the passage shock and the blade boundary layer increases the peak aerodynamic loss by about one percent.


1988 ◽  
Vol 186 ◽  
pp. 583-597 ◽  
Author(s):  
P. M. Eagles

We find certain exact solutions of Jeffery-Hamel type for the boundary-layer equations for film flow over certain beds. If β is the angle of the bed with the horizontal and S is the arclength these beds have equation sin β = (const.)S−3, and allow a description of flows on concave and convex beds. The velocity profiles are markedly different from the semi-Poiseuille flow on a plane bed.We also find a class of beds in which the Jeffery-Hamel flows appear as a first approximation throughout the flow field, which is infinite in streamwise extent. Since the parameter γ specifying the Jeffery-Hamel flow varies in the streamwise direction this allows a description of flows over curved beds which are slowly varying, as described in the theory, in such a way that the local approximation is that Jeffery-Hamel flow with the local value of γ. This allows the description of flows with separation and reattachment of the main stream in some cases.


Author(s):  
G. A. Zess ◽  
K. A. Thole

With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flow field measurements were performed in a large-scale, linear, vane cascade. The flow field measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flowfield results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.


Author(s):  
E. J. Gunn ◽  
C. A. Hall

In a Boundary Layer Ingesting (BLI) fan system the inlet flow field is highly non-uniform. In this environment, an axisymmetric stator design suffers from a non-uniform distribution of hub separations, increased wake thicknesses and casing losses. These additional loss sources can be reduced using a non-axisymmetric design that is tuned to the radial and circumferential flow variations at exit from the rotor. In this paper a non-axisymmetric design approach is described for the stator of a low-speed BLI fan. Firstly sectional design changes are applied at each radial and circumferential location. Next, this approach is combined with the application of non-axisymmetric lean. The designs were tested computationally using full-annulus unsteady CFD of the complete fan stage with a representative inlet distortion. The final design has also been manufactured and tested experimentally. The results show that a 2D sectional approach can be applied non-axisymmetrically to reduce incidence and diffusion factor at each location. This leads to reduced loss, particularly at the casing and midspan, but it does not eliminate the hub separations that are present within highly distorted regions of the annulus. These are relieved by non-axisymmetric lean where the pressure surface is inclined towards the hub. For the final design, the loss in the stator blades operating with BLI was measured to be 10% lower than for the original stator design operating with undistorted inflow. Overall, the results demonstrate that non-axisymmetric design has the potential to eliminate any additional loss in a BLI fan stator caused by the non-uniform ingested flow-field.


Sign in / Sign up

Export Citation Format

Share Document