Building cyber resilience in space assets with real-time autonomous Graph Database Anomaly Detection Algorithms

ASCEND 2020 ◽  
2020 ◽  
Author(s):  
Sam Adhikari
2020 ◽  
Author(s):  
Zirije Hasani ◽  
Jakup Fondaj

Abstract Most of the today's world data are streaming, time-series data, where anomalies detection gives significant information of possible critical situations. Yet, detecting anomalies in big streaming data is a difficult task, requiring detectors to acquire and process data in a real-time, as they occur, even before they are stored and instantly alarm on potential threats. Suitable to the need for real-time alarm and unsupervised procedures for massive streaming data anomaly detection, algorithms have to be robust, with low processing time, eventually at the cost of the accuracy. In this work we compare the performance of our proposed anomaly detection algorithm HW-GA[1] with other existing methods as ARIMA [10], Moving Average [11] and Holt Winters [12]. The algorithms are tested and results are visualized in the system R, on the three Numenta datasets, with known anomalies and own e-dnevnik dataset with unknown anomalies. Evaluation is done by comparing achieved results (the algorithm execution time and CPU usage). Our interest is monitoring of the streaming log data that are generating in the national educational network (e-dnevnik) that acquires a massive number of online queries and to detect anomalies in order to scale up performance, prevent network downs, alarm on possible attacks and similar.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4237
Author(s):  
Hoon Ko ◽  
Kwangcheol Rim ◽  
Isabel Praça

The biggest problem with conventional anomaly signal detection using features was that it was difficult to use it in real time and it requires processing of network signals. Furthermore, analyzing network signals in real-time required vast amounts of processing for each signal, as each protocol contained various pieces of information. This paper suggests anomaly detection by analyzing the relationship among each feature to the anomaly detection model. The model analyzes the anomaly of network signals based on anomaly feature detection. The selected feature for anomaly detection does not require constant network signal updates and real-time processing of these signals. When the selected features are found in the received signal, the signal is registered as a potential anomaly signal and is then steadily monitored until it is determined as either an anomaly or normal signal. In terms of the results, it determined the anomaly with 99.7% (0.997) accuracy in f(4)(S0) and in case f(4)(REJ) received 11,233 signals with a normal or 171anomaly judgment accuracy of 98.7% (0.987).


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 22528-22541
Author(s):  
Ruifeng Duo ◽  
Xiaobo Nie ◽  
Ning Yang ◽  
Chuan Yue ◽  
Yongxiang Wang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document