Toward Numerical Investigation of Ignition and Combustion Transition in a Subscale LOX/Methane Rocket Combustor

2021 ◽  
Author(s):  
Matthew Bonanni ◽  
Danyal Mohaddes ◽  
Nguyen Ly ◽  
Nikolaos Perakis ◽  
Justin Hardi ◽  
...  
Author(s):  
Qiongliang Zha ◽  
Kai Chen ◽  
Jianwen Zhang ◽  
Jiangtao Li ◽  
Chang’an Wang ◽  
...  

The refractory belt installed in primary combustion zone provides simplest and most effective solution to suppress ignition delay and enhance combustion stability for low volatile anthracite and lean coal. The fouling deposition generally formed on radiative refractory lined wall of the boiler due to a high surface temperature. The growth of deposition thickness is mainly dependent on the parcile impact on the surface of water wall. A particle capture submodel was used to determine whether a particle was captured to form deposition or not when it reached the furnace wall, and the particle capture criterion was based on the particle’s viscosity and the temperature of the furnace wall. A reduced fouling deposition model was implemented in a three dimensional simulation of a tangentially fired boiler. The numerical investigation was conducted to assess the performance of different layouts of refractory belt. Furnace temperature, surface temperature of refractory belt, and deposition distributions on the furnace wall should be taken into account when layouts of refractory belt are optimized. Based on this, three layouts of refractory belt were proposed for tangentially fired boilers. A numerical investigation was conducted to assess the performance of different layouts of refractory belt and the results showed that the temperature in furnace was increased, and the ignition and combustion processes were stabilized when refractory belts were installed. The reasonable arrangement of refractory belt could reduce the possibility of fouling deposition in furnace.


2021 ◽  
pp. 111693
Author(s):  
Pooria Farmand ◽  
Hendrik Nicolai ◽  
Christoph Schumann ◽  
Antonio Attili ◽  
Lukas Berger ◽  
...  

2016 ◽  
Vol 136 (3) ◽  
pp. 141-146 ◽  
Author(s):  
Akira Kawasaki ◽  
Kenichi Kubota ◽  
Ikkoh Funaki ◽  
Yoshihiro Okuno

Sign in / Sign up

Export Citation Format

Share Document