Measurements of Vibrationally Excited Oxygen Produced in Recombining O-O2-Ar Mixtures

2021 ◽  
Author(s):  
Dirk C. van den Bekerom ◽  
Elijah Jans ◽  
Xin Yang ◽  
Anam C. Paul ◽  
Daniil Andrienko ◽  
...  

2021 ◽  
Author(s):  
Valentine Yankovsky ◽  
Ekaterina Vorobeva ◽  
Rada Manuilova ◽  
Irina Mironova

<p>Atmospheric emissions of atomic and molecular oxygen have been observed since the middle of the 19th century. In the last decades, it has been shown that emissions of excited oxygen atom O(<sup>1</sup>D) and molecular oxygen in electronically-vibrationally excited states O<sub>2</sub>(b<sup>1</sup>Σ<sup>+</sup><sub>g</sub>, v) and O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>, v) are related by a unified photochemical mechanism in the mesosphere and lower thermosphere (MLT). The current study is performed in the framework of the state-of-the-art model of ozone and molecular oxygen photodissociation in the daytime MLT. In particular, the study includes a detailed description of the formation mechanism for excited oxygen components in the daytime MLT and presents the comparison of widely used photochemical models. The study also demonstrates new results such as i) new suggestions about possible products of collisional reactions of electronically-vibrationally excited oxygen molecules with atomic oxygen and ii) new estimates of O<sub>2</sub>(b<sup>1</sup>Σ<sup>+</sup><sub>g</sub>, v = 0 – 10) radiative lifetimes which are necessary for solving inverse problems in the lower thermosphere. Moreover, special attention is given to the Barth’s mechanism in order to demonstrate that its contribution to O<sub>2</sub>(b<sup>1</sup>Σ<sup>+</sup><sub>g</sub>, v) and O<sub>2</sub>(a<sup>1</sup>Δ<sub>g</sub>, v) populations is neglectable in daytime conditions regardless of fitting coefficients. In addition, possible applications of the daytime oxygen emissions are presented, e.g., the altitude profiles O(<sup>3</sup>P), O<sub>3</sub> and CO<sub>2</sub> can be retrieved by solving inverse photochemical problems where emissions from electronically vibrationally excited states of O<sub>2</sub> are used as proxies. The funding of V.Y., R.M. and I.M. was partly provided by the Russian Fund for Basic Research (grant RFBR No. 20-05-00450).</p>



1996 ◽  
Vol 23 (10) ◽  
pp. 1083-1086 ◽  
Author(s):  
Darin Latimer ◽  
Patrick McLoughlin ◽  
John Wiesenfeld


2021 ◽  
Author(s):  
Keegan Orr ◽  
Igor Adamovich ◽  
Anam Paul ◽  
Xin Yang ◽  
Elijah Jans ◽  
...  


Nature ◽  
1991 ◽  
Vol 351 (6323) ◽  
pp. 217-219 ◽  
Author(s):  
R. Toumi ◽  
B. J. Kerridge ◽  
J. A. Pyle


From measurements of the absolute concentrations of vibrationally excited oxygen produced in levels v" = 4 to v" = 13, it is concluded that ca . 20 % of the exothermicity of the reaction O( 3 P) + NO 2 → NO + O + 2 ( v" ≤11) (1) appears initially as vibrational energy in oxygen. Vibrationally excited nitric oxide ( v" = 1, 2) is also observed and may be produced in this reaction or in the primary process NO 2 + hv → NO ( v" ≤ 2) + O( 3 P). More highly excited oxygen ( v" ≤ 15), with energy exceeding the exothermicity of the reaction, is produced in reaction (1) when the NO 2 is first excited by radiation above the dissociation limit near 400 nm. The excited NO 2 thus produced can also transfer energy to nitric oxide. NO 2 * + NO( v" = 0) → NO 2 + NO( v" = 1).





1964 ◽  
Vol 40 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Robert V. Fitzsimmons ◽  
Edward J. Bair


1994 ◽  
Vol 99 (D1) ◽  
pp. 1211 ◽  
Author(s):  
K. O. Patten ◽  
P. S. Connell ◽  
D. E. Kinnison ◽  
D. J. Wuebbles ◽  
T. G. Slanger ◽  
...  


A study of the flash photolysis of chlorine monoxide and of its photosensitized decomposition by chlorine and bromine has yielded rate constants for the reactions Cl + Cl 2 O → Cl 2 + ClO, k 1 = 4.1 x 10 8 l mol -1 s -1 , Br + Cl 2 O → BrCl + ClO, k 9 = 6.1 x 10 8 l mol -1 s -1 , ClO + Cl 2 O → ClO 2 + Cl 2 , k 3 = 2.6 x 10 5 l mol -1 s -1 , ClO + Cl 2 O → Cl 2 + O 2 + Cl, k 4 = 6.5 x 10 5 l mol -1 s -1 , 2ClO → Cl 2 + O 2 , k 2 = 2.8 x 10 7 l mol -1 s -1 . The quantum yield for the decomposition of chlorine monoxide was measured in each of the three systems and is quantitatively accounted for by the reactions given. The CIO free radical has been flash photolysed and the production of vibrationally excited oxygen in the reaction O + CIO → Cl + O* 2 ( v" ≼ 14), k 11 = 7.5 x 10 9 l mol -1 s -1 demonstrated. The same reaction is responsible for the production of O* 2 in the flash photo­lysis of Cl 2 O with radiation below ~ 300 nm. The relaxation of O* 2 by chlorine atoms is exceptionally efficient, with a rate constant for v" = 12 in excess of 2 x 10 9 l mol -1 s -1 . The corresponding rate constant for relaxation by Cl 2 O is < 10 8 l mol -1 s -1 .





Sign in / Sign up

Export Citation Format

Share Document