In-house High-Fidelity Generic Turbofan Model for Aerothermodynamic Design Studies

2022 ◽  
Author(s):  
Manuel d. Gurrola-Arrieta ◽  
Ruxandra M. Botez
Keyword(s):  
Author(s):  
Vedant ◽  
James T. Allison

Abstract Multifunctional Structures for Attitude Control (MSAC) is a new spacecraft attitude control system that utilizes deployable panels as multifunctional intelligent structures to provide both fine pointing and large slew attitude control. Previous studies introduced MSAC design and operation concepts, simulation-based design studies, and Hardware-in-the-Loop (HIL) validation of a simplified prototype. In this article, we expand the scope of design studies to include individual compliant piezo-electric actuators and associated power electronics. This advance is a step toward high-fidelity MSAC system operation, and reveals new design insights for further performance enhancement. Actuators are designed using pseudo rigid body dynamic models (PRBDMs), and are validated for steady-state and step responses against Finite Element Analysis. The drive electronics model consists of a few distinct topologies that will be used to evaluate system performance for given mechanical and control system designs. Subsequently, a high-fidelity multiphysics multibody MSAC system model, based on the validated compliant actuators and drive electronics, is developed to support implementation of MSAC Control Co-design optimization studies. This model will be used to demonstrate the impact of including the power electronics design in the Optimal Control Co-Design domain. The different control trajectories are compared for slew rates and the vibrational jitter introduced to the satellite. The results from this work will be used to realize closed-loop control trajectories that have minimal jitter introduction while providing high slew rates.


2011 ◽  
Vol 20 (4) ◽  
pp. 109-113
Author(s):  
Karen Copple ◽  
Rajinder Koul ◽  
Devender Banda ◽  
Ellen Frye

Abstract One of the instructional techniques reported in the literature to teach communication skills to persons with autism is video modeling (VM). VM is a form of observational learning that involves watching and imitating the desired target behavior(s) exhibited by the person on the videotape. VM has been used to teach a variety of social and communicative behaviors to persons with developmental disabilities such as autism. In this paper, we describe the VM technique and summarize the results of two single-subject experimental design studies that investigated the acquisition of spontaneous requesting skills using a speech generating device (SGD) by persons with autism following a VM intervention. The results of these two studies indicate that a VM treatment package that includes a SGD as one of its components can be effective in facilitating communication in individuals with autism who have little or no functional speech.


2018 ◽  
Vol 17 (3) ◽  
pp. 155-160 ◽  
Author(s):  
Daniel Dürr ◽  
Ute-Christine Klehe

Abstract. Faking has been a concern in selection research for many years. Many studies have examined faking in questionnaires while far less is known about faking in selection exercises with higher fidelity. This study applies the theory of planned behavior (TPB; Ajzen, 1991 ) to low- (interviews) and high-fidelity (role play, group discussion) exercises, testing whether the TPB predicts reported faking behavior. Data from a mock selection procedure suggests that candidates do report to fake in low- and high-fidelity exercises. Additionally, the TPB showed good predictive validity for faking in a low-fidelity exercise, yet not for faking in high-fidelity exercises.


2019 ◽  
Vol 12 (1) ◽  
pp. 18-33 ◽  
Author(s):  
Horea Pauna ◽  
Pierre-Majorique Léger ◽  
Sylvain Sénécal ◽  
Marc Fredette ◽  
Élise Labonté-Lemoyne ◽  
...  

1998 ◽  
Author(s):  
R. Hampton ◽  
Nagendra Subba Rao ◽  
Young Kim ◽  
William Wagar ◽  
Allen Karchmer

Sign in / Sign up

Export Citation Format

Share Document