A Spatial Arrangement Visualisation Strategy for Learning from Large Ensembles of Unsteady Flow-field Data

2022 ◽  
Author(s):  
Aljaz Kotnik ◽  
Graham Pullan
Author(s):  
Kai Zhang ◽  
AJ Wang

In order to ensure flight safety, the stall test is one of the most important steps in the airworthiness certification phase of civil aircraft. The twisted-swept fan is one of the most important components of the high bypass ratio engine. The unsteady flow field of the fan rotor stall condition is obtained by numerical simulation. At the same time, the time series flow field data of the stall condition flow field is acquired. The modal analysis of the unsteady flow field at stall condition was performed using the dynamic mode decomposition and proper orthogonal decomposition methods. Through modal identification of a large number of unsteady flow field data, the eigenvalues and corresponding modal information about the unsteady flow field change process are obtained. Finally, the evolution process of the unsteady flow field of the fan rotor under stall condition is visually demonstrated, and the coherent structures of different scales in the complex flow field under stall condition are revealed.


2021 ◽  
pp. 107754632110036
Author(s):  
Shihui Huo ◽  
Hong Huang ◽  
Daoqiong Huang ◽  
Zhanyi Liu ◽  
Hui Chen

Turbo pump is one of the elements with the most complex flow of liquid rocket engine, and as an important component of turbo pump, an impeller is the weak point affecting its reliability. In this study, a noncontact modal characteristic identification technique was proposed for the liquid oxygen pump impeller. Modal characteristics of the impeller under three different submerged media, air, pure water, and brine with same density as liquid oxygen, were tested based on the noncontact modal identification technology. Submersion state directly affects the modal frequencies and damping ratio. The transient vibration response characteristics of the impeller excited by the unsteady flow field was achieved combining with unsteady flow field analysis and transient dynamic analysis in the whole flow passage of the liquid oxygen pump. Vibration responses at different positions of the impeller show 10X and 20X frequencies, and the amplitude at the root of short blade is significant, which needs to be paid more attention in structural design and fatigue evaluation.


2009 ◽  
Vol 42 (1) ◽  
pp. 42-47 ◽  
Author(s):  
K. Matsuuchi ◽  
T. Miwa ◽  
T. Nomura ◽  
J. Sakakibara ◽  
H. Shintani ◽  
...  

Author(s):  
S. Zerobin ◽  
S. Bauinger ◽  
A. Marn ◽  
A. Peters ◽  
F. Heitmeir ◽  
...  

This paper presents an experimental study of the unsteady flow field downstream of a high pressure turbine with ejected purge flows, with a special focus on a flow field discussion using the mode detection approach according to the theory of Tyler and Sofrin. Measurements were carried out in a product-representative one and a half stage turbine test setup, which consists of a high-pressure turbine stage followed by an intermediate turbine center frame and a low-pressure turbine vane row. Four independent purge mass flows were injected through the forward and aft cavities of the unshrouded high-pressure turbine rotor. A fast-response pressure probe was used to acquire time-resolved data at the turbine center frame duct inlet and exit. The interactions between the stator, rotor, and turbine center frame duct are identified as spinning modes, propagating in azimuthal direction. Time-space diagrams illustrate the amplitude variation of the detected modes along the span. The composition of the unsteadiness and its major contributors are of interest to determine the role of unsteadiness in the turbine center frame duct loss generation mechanisms and to avoid high levels of blade vibrations in the low-pressure turbine which can in turn result in increased acoustic emissions. This work offers new insight into the unsteady flow behavior downstream of a purged high-pressure turbine and its propagation through an engine-representative turbine center frame duct configuration.


Author(s):  
P. Gaetani ◽  
G. Persico ◽  
V. Dossena ◽  
C. Osnaghi

An extensive experimental analysis was carried out at Politecnico di Milano on the subject of unsteady flow in high pressure (HP) turbine stages. In this paper the unsteady flow measured downstream of a modern HP turbine stage is discussed. Traverses in two planes downstream of the rotor are considered and, in one of them, the effects of two very different axial gaps are investigated: the maximum axial gap, equal to one stator axial chord, is chosen to “switch off” the rotor inlet unsteadiness, while the nominal gap, equal to 1/3 of the stator axial chord, is representative of actual engines. The experiments were performed by means of a fast-response pressure probe, allowing for two-dimensional phase-resolved flow measurements in a bandwidth of 80 kHz. The main properties of the probe and the data processing are described. The core of the paper is the analysis of the unsteady rotor aerodynamics; for this purpose, instantaneous snapshots of the rotor flow in the relative frame are used. The rotor mean flow and its interaction with the stator wakes and vortices are also described. In the outer part of the channel only the rotor cascade effects can be observed, with a dominant role played by the tip-leakage flow and by the rotor tip passage vortex. In the hub region, where the secondary flows downstream of the stator are stronger, the persistence of stator vortices is slightly visible in the maximum stator-rotor axial gap configuration, while in the minimum stator-rotor axial gap configuration the interaction with the rotor vortices dominates the flow field. A fair agreement with the wakes and vortices transport models has been achieved. A discussion of the interaction process is reported giving particular emphasis to the effects of the different cascade axial gaps. Some final considerations on the effects of the different axial gap over the stage performances are reported.


2013 ◽  
Vol 730 ◽  
pp. 145-161 ◽  
Author(s):  
Qiqi Wang ◽  
Jun-Hui Gao

AbstractThis paper analyses the adjoint solution of the Navier–Stokes equation. We focus on flow across a circular cylinder at three Reynolds numbers, ${\mathit{Re}}_{D} = 20, 100$ and $500$. The quantity of interest in the adjoint formulation is the drag on the cylinder. We use classical fluid mechanics approaches to analyse the adjoint solution, which is a vector field similar to a flow field. Production and dissipation of kinetic energy of the adjoint field is discussed. We also derive the evolution of circulation of the adjoint field along a closed material contour. These analytical results are used to explain three numerical solutions of the adjoint equations presented in this paper. The adjoint solution at ${\mathit{Re}}_{D} = 20$, a viscous steady state flow, exhibits a downstream suction and an upstream jet, the opposite of the expected behaviour of a flow field. The adjoint solution at ${\mathit{Re}}_{D} = 100$, a periodic two-dimensional unsteady flow, exhibits periodic, bean-shaped circulation in the near-wake region. The adjoint solution at ${\mathit{Re}}_{D} = 500$, a turbulent three-dimensional unsteady flow, has complex dynamics created by the shear layer in the near wake. The magnitude of the adjoint solution increases exponentially at the rate of the first Lyapunov exponent. These numerical results correlate well with the theoretical analysis presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document