scholarly journals Shape Optimization of a Sandwich Composite Plate with Low-Velocity Impact Loading and effect of Finite Difference Sensitivity Analysis

2022 ◽  
Author(s):  
Utsav B. Shah ◽  
Mandar D. Kulkarni ◽  
Naresh L. Ahuja
2018 ◽  
Vol 144 ◽  
pp. 01010
Author(s):  
M. Vishwas ◽  
Sharnappa Joladarashi ◽  
Satyabodh M. Kulkarni

Sandwich structure offer more advantage in bringing flexural stiffness and energy absorption capabilities in the application of automobile and aerospace components. This paper presents comparison study and analysis of two types of composite sandwich structures, one having Jute Epoxy skins with rubber core and the other having Glass Epoxy skins with rubber core subjected to low velocity normal impact loading. The behaviour of sandwich structure with various parameters such as energy absorption, peak load developed, deformation and von Mises stress and strain, are analyzed using commercially available analysis software. The results confirm that sandwich composite with jute epoxy skin absorbs approximately 20% more energy than glass epoxy skin. The contact force developed in jute epoxy skin is approximately 2.3 times less when compared to glass epoxy skin. von Mises stress developed is less in case of jute epoxy. The sandwich with jute epoxy skin deforms approximately 1.6 times more than that of same geometry of sandwich with glass epoxy skin. Thus exhibiting its elastic nature and making it potential candidate for low velocity impact application.


2007 ◽  
Vol 41 (19) ◽  
pp. 2347-2370 ◽  
Author(s):  
S.M.R. Khalili ◽  
A. Shokuhfar ◽  
F. Ashenai Ghasemi ◽  
K. Malekzadeh

2013 ◽  
Vol 710 ◽  
pp. 136-141
Author(s):  
Li Jun Wei ◽  
Fang Lue Huang ◽  
Hong Peng Li

Sandwich composite laminates structure is a classic application of composite material on actual aircraft structural. Dealing with low-velocity impact damage and residual compressive strength of sandwich composite laminates, explicit finite element method of ABAQUS/Explicit software was adopted to simulate low-velocity impact and compression process. Impact response and invalidation on compression between sandwich composite laminates with different core materials and regular composite laminates were compared. The simulation results indicated that softer core materials can absorb more impact energy, reduce the structure damage and enhance the residual compressive strength after impact.


Sign in / Sign up

Export Citation Format

Share Document