Novel Structural Connector System for In-space Assembly of Truss Structures

2022 ◽  
Author(s):  
Ian Down ◽  
David Akin
Keyword(s):  
2020 ◽  
Vol 38 (9A) ◽  
pp. 1396-1405
Author(s):  
Arwa F. Tawfeeq ◽  
Matthew R. Barnett

The development in the manufacturing of micro-truss structures has demonstrated the effectiveness of brazing for assembling these sandwiches, which opens new opportunities for cost-effective and high-quality truss manufacturing. An evolving idea in micro-truss manufacturing is the possibility of forming these structures in different shapes with the aid of elevated temperature. This work investigates the formability and elongation of aluminum alloy sheets typically used for micro-truss manufacturing, namely AA5083 and AA3003. Tensile tests were performed at a temperature in the range of 25-500 ○C and strain rate in the range of 2x10-4 -10-2 s-1. The results showed that the clad layer in AA3003 exhibited an insignificant effect on the formability and elongation of AA3003. The formability of the two alloys was improved significantly with values of m as high as 0.4 and 0.13 for AA5083 and AA3003 at 500 °C. While the elongation of both AA5083 and AA3003 was improved at a higher temperature, the elongation of AA5083 was inversely related to strain rate. It was concluded that the higher the temperature is the better the formability and elongation of the two alloys but at the expense of work hardening. This suggests a trade-off situation between formability and strength. 


2020 ◽  
Vol 14 (1) ◽  
pp. 69-81
Author(s):  
C.H. Li ◽  
Q.W. Yang

Background: Structural damage identification is a very important subject in the field of civil, mechanical and aerospace engineering according to recent patents. Optimal sensor placement is one of the key problems to be solved in structural damage identification. Methods: This paper presents a simple and convenient algorithm for optimizing sensor locations for structural damage identification. Unlike other algorithms found in the published papers, the optimization procedure of sensor placement is divided into two stages. The first stage is to determine the key parts in the whole structure by their contribution to the global flexibility perturbation. The second stage is to place sensors on the nodes associated with those key parts for monitoring possible damage more efficiently. With the sensor locations determined by the proposed optimization process, structural damage can be readily identified by using the incomplete modes yielded from these optimized sensor measurements. In addition, an Improved Ridge Estimate (IRE) technique is proposed in this study to effectively resist the data errors due to modal truncation and measurement noise. Two truss structures and a frame structure are used as examples to demonstrate the feasibility and efficiency of the presented algorithm. Results: From the numerical results, structural damages can be successfully detected by the proposed method using the partial modes yielded by the optimal measurement with 5% noise level. Conclusion: It has been shown that the proposed method is simple to implement and effective for structural damage identification.


Author(s):  
Dalong Tian ◽  
Jianguo Guo

This study aims to develop an advanced integral terminal sliding-mode robust control method using a disturbance observer (DO) to suppress the forced vibration of a large space intelligent truss structure (LSITS). First, the dynamics of the electromechanical coupling of the piezoelectric stack actuator and the LSITS, based on finite element and Lagrangian methods, are established. Subsequently, to constrict the vibration of the structure, a novel integral terminal sliding-mode control (ITSMC) law for the DO is used to estimate the parameter perturbation of the LSITS based on a continuous external disturbance. Simulation results show that, under a forced vibration and compared with the ITSMC system without a DO, the displacement amplitude of the ITSMC system with the DO is effectively reduced. In the case where the model parameters of the LSITS deviate by ±50%, and an unknown continuous external disturbance exists, the control system with the DO can adequately attenuate the structural vibration and realize robust control. Concurrently, the voltage of the employed piezoelectric stack actuator is reduced, and voltage jitter is alleviated.


Sign in / Sign up

Export Citation Format

Share Document