Sustaining Space Exploration over the Long Term

Author(s):  
Peggy Finarelli ◽  
Ian Pryke
Keyword(s):  
2020 ◽  
Vol 49 (1_suppl) ◽  
pp. 213-216
Author(s):  
G. Zhou ◽  
W. Hu ◽  
H. Pei ◽  
H. Chen ◽  
T.K. Hei

Manned space exploration was initiated in China in 1992, and substantial progress has been made. The next step is to build the Chinese Space Station (CSS), which is planned to be launched in 2020. The CSS will provide an on-orbit laboratory for experimental studies including space radiation research. The health risk of space radiation, especially carcinogenesis, is a major concern for long-term space exploration. Establishing a risk assessment system suitable for Chinese astronauts and developing effective countermeasures are major tasks for Chinese space radiobiologists. The Institute of Space Life Sciences, Soochow University has focused on these topics for years. We established cancer models with low-dose-rate exposure of alpha particles, and elucidated a microRNA-TGFβ network regulating bystander effects and a lncRNA-cytoskeleton network regulating genomic instability induced by ionising radiation. We also confirmed the radioresistance of quiescent cells, which inspires a potential strategy to improve individual radioresistance during long-term space travel. However, we believe that a multi-disciplinary strategy must be developed to protect astronauts from highly energised space radiation.


2009 ◽  
Vol 23 (2) ◽  
pp. 43-53 ◽  
Author(s):  
Hideyuki J. Majima ◽  
Hiroko P. Indo ◽  
Kazuo Tomita ◽  
Yoichiro Iwashita ◽  
Hiromi Suzuki ◽  
...  

2019 ◽  
Vol 20 (2) ◽  
pp. 352 ◽  
Author(s):  
Walter Tinganelli ◽  
Timna Hitrec ◽  
Fabrizio Romani ◽  
Palma Simoniello ◽  
Fabio Squarcio ◽  
...  

Hibernation has been proposed as a tool for human space travel. In recent years, a procedure to induce a metabolic state known as “synthetic torpor” in non-hibernating mammals was successfully developed. Synthetic torpor may not only be an efficient method to spare resources and reduce psychological problems in long-term exploratory-class missions, but may also represent a countermeasure against cosmic rays. Here we show the preliminary results from an experiment in rats exposed to ionizing radiation in normothermic conditions or synthetic torpor. Animals were irradiated with 3 Gy X-rays and organs were collected 4 h after exposure. Histological analysis of liver and testicle showed a reduced toxicity in animals irradiated in torpor compared to controls irradiated at normal temperature and metabolic activity. The expression of ataxia telangiectasia mutated (ATM) in the liver was significantly downregulated in the group of animal in synthetic torpor. In the testicle, more genes involved in the DNA damage signaling were downregulated during synthetic torpor. These data show for the first time that synthetic torpor is a radioprotector in non-hibernators, similarly to natural torpor in hibernating animals. Synthetic torpor can be an effective strategy to protect humans during long term space exploration of the solar system.


2021 ◽  
Author(s):  
Jonathan Jiang ◽  
Philip Rosen ◽  
Kristen Fahy

Abstract A foundational model has been developed based on trends built from empirical data of space exploration and computing power through the first six plus decades of the Space Age which projects earliest possible launch dates for human-crewed missions from cis-lunar space to selected Solar System and interstellar destinations. The model uses computational power, expressed as transistors per microprocessor, as a key broadly limiting factor for deep space missions’ reach and complexity. The goal of this analysis is to provide a projected timeframe for humanity to become a multi-world species through off-world colonization, and in so doing all but guarantees the long-term survival of the human race from natural and human-caused calamities that could befall life on Earth. Beginning with the development and deployment of the first nuclear weapons near the end of World War II, humanity entered a ‘Window of Peril’ which will not be safely closed until robust off-world colonies become a reality. Our findings suggest the first human-crewed missions to land on Mars, selected Asteroid Belt objects, and selected moons of Jupiter and Saturn can occur before the end of the 21st century. Launches of human-crewed interstellar missions to exoplanet destinations within roughly 40 lightyears of the Solar System are seen as possible during the 23rd century and launch of intragalactic missions by the end of the 24th century. An aggressive and sustained space exploration program, which includes colonization, is thus seen as critical to the long-term survival of the human race.


2021 ◽  
Author(s):  
Antoni Viros-i-Martin ◽  
Daniel Selva

Abstract This paper presents a framework to describe and explain human-machine collaborative design focusing on Design Space Exploration (DSE), which is a popular method used in the early design of complex systems with roots in the well-known design as exploration paradigm. The human designer and a cognitive design assistant are both modeled as intelligent agents, with an internal state (e.g., motivation, cognitive workload), a knowledge state (separated in domain, design process, and problem specific knowledge), an estimated state of the world (i.e., status of the design task) and of the other agent, a hierarchy of goals (short-term and long-term, design and learning goals) and a set of long-term attributes (e.g., Kirton’s Adaption-Innovation inventory style, risk aversion). The framework emphasizes the relation between design goals and learning goals in DSE, as previously highlighted in the literature (e.g., Concept-Knowledge theory, LinD model) and builds upon the theory of common ground from human-computer interaction (e.g., shared goals, plans, attention) as a building block to develop successful assistants and interactions. Recent studies in human-AI collaborative DSE are reviewed from the lens of the proposed framework, and some new research questions are identified. This framework can help advance the theory of human-AI collaborative design by helping design researchers build promising hypotheses, and design studies to test these hypotheses that consider most relevant factors.


2020 ◽  
Author(s):  
guo linli ◽  
blanc michel ◽  
huang tieqiu ◽  
huang jiangze ◽  
yuan jianping ◽  
...  

<p>    The Moon is sometimes also called the "eighth continent" of the Earth. Determining how to utilize cis-lunar orbital infrastructures and lunar resources to carry out new economic activities extended to the space of the Earth-Moon system is one of the long-term goals of lunar exploration activities around the world. Future long-term human deep-space exploration missions to the Moon, on the Moon surface or using the Moon to serve farther destinations will require the utilization of lunar surface or asteroid resources to produce water, oxygen and other consumables needed to maintain human survival and to produce liquid propellant for the supply of spacecraft on the lunar surface. In complement to exploration activities, Moon tourism in cis-lunar orbit and on the lunar surface will become more and more attractive with the increase of  human spaceflight capacity and the development of commercial space activities. However, the development of a sustainable Earth-Moon ecosystem requires that we solve the following five problems:</p><p>(1)How to design alow-cost cis-lunar space transportation capacity? To find an optimal solution, one must compare direct Earth-Moon flight modes with flights based on the utilization of space stations, and identify the most economical spacecraft architectures.</p><p>(2)How to design an efficient set ofcis-lunar orbital infrastructures combining LEO space stations, Earth-Moon L1/L2 point space stations and Moon bases for commercial tourism, taking into account key issues such as energy, communications and others?</p><p>(3)Significant amounts ofliquid oxygen, water, liquid propellant and structural material will be needed for human bases, crew environmental control and life support systems, spacecraft propulsion systems, Moon surface storage and transportation systems. How to  design in-situ resources utilization (ISRU) of the Moon, including its soil, rocks and polar water ice reservoirs, to produce the needed amounts?</p><p>(4) How to simulate on the Earth surface the different components and key technologies that will enable a future long-term human residence on the Moon surface?</p><p>(5). How to accommodate the co-development of public and commercial space and foster international cooperation? How can space policies and international space law help this co-development?</p><p>    China has made rapid progress in robotic lunar exploration activities in the last 20 years, as illustrated by the recent discoveries provided by the Chang'e-4 lander on the far side of the Moon. By 2061, China will have gone into manned lunar exploration and built Moon bases. In preparation for this new phase of its contribution to space exploration, lunar surface simulation instruments have been built in Beijing, Shenzhen and other places in China. A series of achievements have been made in the field of space life sciences . An ambitious project to establish a large Moon base simulation test field, the Lunar Base Yulin (LBY) project, currently in its design phase in Yulin, Shaanxi Province in China, will allow the verification of key relevant technologies.</p><p>    By the 2061 Horizon, we believe that international cooperation and public-private partnership will be key elements to enable this vision of a new, sustainable cis-lunar space economy.</p>


Author(s):  
Cynthia M. Rando ◽  
Susan D. Baggerman ◽  
Laura E. Duvall

Over the last 40 years NASA has made great strides in creating habitable environments that support long-term space exploration. Most recently, the Skylab, Mir, and International Space Station exploration endeavors have provided NASA with a wealth of lessons learned to be carried forth to the new national vision for space exploration: “to the moon, Mars and beyond.” This paper will focus on the challenges and successes associated with creating a safe, functional, and productive environment for the human being living in space for an extended length of time. Specifically, the authors will be focusing on the issues surrounding habitation in space including: crew sleeping quarters, food preparation and dining facilities, exercise countermeasures, personal hygiene and waste collection, crew leisure time, and internal vehicle configuration. The lessons learned will be used to make recommendations for future long term space exploration.


Space 2000 ◽  
2000 ◽  
Author(s):  
W. Seboldt ◽  
M. Reichert ◽  
N. Hanowski ◽  
D. Koenies ◽  
M. Novara
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document