scholarly journals DESIGN OF DOCKING SYSTEM FOR MOBILE ROBOTICS PLATFORM TYPE AGV

Author(s):  
Semjon Jan ◽  
Grexa Ján ◽  
Mako Peter

Urgency of the research. Automatic battery charging of AGV platforms allows you to maximize their potential. Safe and quickly positioning AGVs in a charging station equipped with appropriate contacts, reduces the charging time as well as the purchase price of the device. Target setting. The aim of the solution is to design an automatic docking and charging station from a used hand-held charging station. In the design, it was necessary to ensure the appropriate position of the AGV platform against the docking station. Actual scientific researches and issues analysis. The issue of fast and reliable charging of mobile service robots is highly up-to-date. The reason for this is the growing deployment of AGV platforms in various industrial or service sectors. Uninvestigated parts of general matters defining. This article focuses on a specific solution for the provision of transport services. Transport services come from the need to transport medical supplies and medications in a multi-storey hospital building. The movement of the robot between the floors is solved by the use of lifts used by the personal of hospital. The research objective. The aim of the research was to design a docking and charging station utilized an already purchased power-up charger. The design was aimed at creating an appropriate power transmission system between the charger and the AGV platform batteries. The price ceiling for the whole facility was worth € 2,000. The statement of basic materials. The use of docking and charging stations for mobile service robots is dependent on a number of parameters. In particular, the parameters depend on the area of use, the size of the battery to be charged, and the amount of robots being recharged at the station. Last but not least, charging time and purchase price are also important. Conclusions. The task of the solution was to design a docking station design for the AGV platform. At the beginning, three variants were created, from which the most appropriate solution was chosen using the scoring method. However, before designing the docking station design, it was necessary to modify the existing AGV platform construction so that it could be connected to the docking station charging mechanism. The design of the docking station itself consisted of the design of the charging and charging mechanism. These mechanisms provide charge and guidance of the AGV platform to the docking station. Mechanisms are not dependent on each other, since the charging mechanism is activated later than the drive mechanism. Subsequently, a design of the docking station, which can be anchored to the floor or to the wall, was created. At the docking station there is a charger from Hoppecke, which provides the AGV platform charging. The design dimensions of the docking station have been greatly influenced by the size of the above-mentioned charger. It has been found that new and better technologies will not be needed at the docking stations in the future, as AGV platforms can be guided without their help. The development of new and better quality systems will bring new guidance options to AGV platforms and docking stations.

2021 ◽  
Author(s):  
Yiran Tian ◽  
Xingrun An ◽  
Xiaoqing Qiu ◽  
Xichen Xu ◽  
Sen Zhang

Author(s):  
Wojciech Dudek ◽  
Wojciech Szynkiewicz

A review of the known and an indication of the new threats for cyber-physical robotic systems, caused by cybernetic attacks, serves, in this paper, as a basis for the analysis of the known methods relied upon to detect and mitigate consequences of such attacks. A particular emphasis is placed on threats specific for cyber-physical systems, as they are a feature distinguishing these systems from their traditional Information and Communication Technologies (ICT) counterparts. Based on the review of literature and own analyses, unresolved issues regarding the cyber-security of robot systems are presented and discussed.


Author(s):  
Ali Gürcan Özkil ◽  
Thomas Howard

This paper presents a new and practical method for mapping and annotating indoor environments for mobile robot use. The method makes use of 2D occupancy grid maps for metric representation, and topology maps to indicate the connectivity of the ‘places-of-interests’ in the environment. Novel use of 2D visual tags allows encoding information physically at places-of-interest. Moreover, using physical characteristics of the visual tags (i.e. paper size) is exploited to recover relative poses of the tags in the environment using a simple camera. This method extends tag encoding to simultaneous localization and mapping in topology space, and fuses camera and robot pose estimations to build an automatically annotated global topo-metric map. It is developed as a framework for a hospital service robot and tested in a real hospital. Experiments show that the method is capable of producing globally consistent, automatically annotated hybrid metric-topological maps that is needed by mobile service robots.


Sign in / Sign up

Export Citation Format

Share Document