scholarly journals DETERMINATION OF TRANSFER FUNCTION OF MAGNETIC LEVITATION MODEL AND EXPERIMENTAL VERIFICATION OF OPTICAL SENSOR

Author(s):  
Erik Prada

Urgency of the research. The potential of controlling the position of levitating objects has great application in deposition and in various positioning systems. Magnetic levitation eliminates direct mechanical friction between moving parts. Target setting. The measurement shielding method used is one of the methods of determining the position of a levitating object. By combining positioning and regulating elements, we achieve a feedback control. The use of a given type of measurement has advantages in places where the use of other methods is not appropriate. Actual scientific researches and issues analysis. The problem of magnetic levitation is addressed by several research laboratories with a direct connection to practice. The problem that is currently solved within magnetic levitation is the regulation of the levitating object using various types of regulators. The research objective. Derivation of mathematical model of magnetic levitation and examination of nonlinear system followed by linearization by Taylor series. Experimental determination of characteristics and dependence between object position, voltage and current. The statement of basic materials. The position of the levitating object is determined by the shading of the optical sensor. The light source is a laser light. Conclusions. In this work we defined the mathematical model of the magnetic levitation system and subsequently derived the transfer function of the levitation system and the position sensor. From the experimental verification of the shadow method for the determination of the position of the levitating object and the consequent need for regulation, we found that the dependence of the position of the levitating object on current and voltage on the photodiode is linear in the active region.

2011 ◽  
Vol 34 (4) ◽  
pp. 422-435 ◽  
Author(s):  
Jerzy Baranowski ◽  
Paweł Piątek

Control of active magnetic bearings is an important area of research. The laboratory magnetic levitation system can be interpreted as a model of a single axis of bearings and is a useful testbed for control algorithms. The mathematical model of this system is highly non-linear and requires careful analysis and identification. The system is observable from position measurements as long as the electromagnet is powered as shown during the research. Practically measurable signals are the position and the coil current. The velocity that is necessary for any stabilizing control usually is obtained by numerical differentiation of the position. A more sophisticated approach is to estimate the velocity with an observer. Efficient observer types for this system are high-gain and non-linear reduced observers. The velocity estimated by an observer can be effectively used instead of a derivative in PID control of the position. Such an approach substantially improves control quality and extends the range of system’s stable operation. Even greater improvement is introduced by the addition of the non-linear feedforward to the control structure. The best results, provided the model parameters are correctly identified, are obtained with a control system consisting of the PID controller, the high-gain observer and the non-linear feedforward.


2017 ◽  
Vol 3 (3) ◽  
pp. 111-132 ◽  
Author(s):  
Timur D Vlasov ◽  
Artemiy V Rubinskiy

The article deals with the analysis of medical and biological safety of the results of work on the design and model-laboratory experiments of “Russian maglev” transport system. Purpose. The purpose of the work is determination of location and level of field physical characteristics of national magnetic levitation system “Russian maglev”, development of scientifically justified preventive-sanitary suggestions and recommendations necessary for design and application of the systems for protection, control and monitoring of hazardous effects of non-radiation physical fields on passengers, personnel and transported cargo and ecology. Methodology. To achieve the set purpose a review of modern ideas on the influence of constant and low frequency magnetic fields on people was carried out, characteristics of main sources of EMF influence on people during “Russian maglev” technologies operation were studied and described. The obtained results were compared with technical documents on electromagnetic safety. Results. As a result of this work, hygienic requirements for absolute levels and length of unfavourable factors impact on railway transport were determined, which are not mentioned in the active Sanitary Regulations and Instructions. Considering this, recommendations for the most safety placement of MF for people and safety means in crew vehicle were given. Practical significance. The significance of this work is that the preliminary work for medical-biological studies in conditions of full-size model was carried out.


2019 ◽  
Vol 20 (4) ◽  
pp. 1-11
Author(s):  
Yair Lozano Hernández ◽  
Oscar Octavio Gutiérrez Frías ◽  
Mario Villafuerte Bante

In the present work, the design and implementation of a control scheme is presented. The aim of the control scheme is to perform regulation and trajectory tracking tasks in the position of a magnetic levitation system, which acts by electromagnetic repulsion. Such levitation system consists of a beam operated by an active magnetic bearing in pendular configuration. Although the Proportional Integral Derivative (PID) controller shows arithmetic simplicity, ease of use, high robustness and error equal to zero in stable state (Pal & Mudi, 2008), the magnetic levitation system mathematical model is highly non-linear and is subject to uncertainty or variation of its parameters. Therefore, the PID control does not guarantee the fulfillment of trajectory tracking tasks (Precup & Hellendoorn, 2011). In summary, a diffuse PI is used due to the system non-linear dynamics and the hysteresis present in the electromagnet. The controller design was made with the following methodology: the mathematical model and the non-linear characteristics of the system are analyzed; the universes of error discourse (derived from error and control action) are experimentally measured. The experimental data was used for the fuzzification, defuzzification, statement of the rules and controller gains. The implemented rules were designed for a PD-Fuzzy in which a numerical integration of the control action was applied, obtaining a Fuzzy PI. Finally, the implementation was made on the STM32F407G-DISC card, which was programmed with MATLAB-Simulink software tools. The experimental results show that the proposed controller works even below the horizontal, where the behavior can show singularities or physical problems such as magnetization. In compliance with the stated objectives for a range of -5 to 10 radians, these results are maintained even in the presence of disturbances, demonstrating the feasibility of the controller.


2021 ◽  
pp. 22-31
Author(s):  
M. A. Jasem ◽  
◽  
P. Y. Krauinsh ◽  
◽  

The problem of creating a waveform edge kinematical reducer with multi-pair gearing brings to the fore a range of issues in the field of geometric-kinematic gearing theory, which are considered in this work. The synthesis of multi-pair gearing for a waveform edge kinematical reducer, which ensures the constancy of their transfer function, provides for: development of a mathematical model of gearing taking into account the peculiarities of the interaction of teeth during special-spherical motion; description of the profile of the teeth by a system of equations for a spherical surface and for a normal section of teeth for internal gearing; identification with the help of the MathCAD 2010 Professional program of a mathematical experiment and determination of the area of existence of 100 % multi-pair mating of teeth by comparing the shape of their profile with the nature of the analytical function of multi-pair engagement


Sign in / Sign up

Export Citation Format

Share Document