scholarly journals A Radial Basis Neural Network Controller to Solve Congestion in Wireless Sensor Networks

2018 ◽  
Vol 44 (1) ◽  
2018 ◽  
Vol 44 (1) ◽  
pp. 40-48
Author(s):  
Maab Hussain

In multihop networks, such as the Internet and the Mobile Ad-hoc Networks, routing is one of the most importantissues that has an important effect on the network’s performance. This work explores the possibility of using the shortest path routingin wireless sensor network . An ideal routing algorithm should combat to find an perfect path for data that transmitted within anexact time. First an overview of shortest path algorithm is given. Then a congestion estimation algorithm based on multilayerperceptron neural networks (MLP-NNs) with sigmoid activation function, (Radial Basis Neural Network Congestion Controller(RBNNCC) )as a controller at the memory space of the base station node. The trained network model was used to estimate trafficcongestion along the selected route. A comparison study between the network with and without controller in terms of: trafficreceived to the base station, execution time, data lost, and memory utilization . The result clearly shows the effectiveness of RadialBasis Neural Network Congestion Controller (RBNNCC) in traffic congestion prediction and control.


2014 ◽  
Vol 539 ◽  
pp. 247-250
Author(s):  
Xiao Xiao Liang ◽  
Li Cao ◽  
Chong Gang Wei ◽  
Ying Gao Yue

To improve the wireless sensor networks data fusion efficiency and reduce network traffic and the energy consumption of sensor networks, combined with chaos optimization algorithm and BP algorithm designed a chaotic BP hybrid algorithm (COA-BP), and establish a WSNs data fusion model. This model overcomes shortcomings of the traditional BP neural network model. Using the optimized BP neural network to efficiently extract WSN data and fusion the features among a small number of original date, then sends the extracted features date to aggregation nodes, thus enhance the efficiency of data fusion and prolong the network lifetime. Simulation results show that, compared with LEACH algorithm, BP neural network and PSO-BP algorithm, this algorithm can effectively reduce network traffic, reducing 19% of the total energy consumption of nodes and prolong the network lifetime.


Sign in / Sign up

Export Citation Format

Share Document