Analysis of Land Surface Temperature Status by Land Cover in Urban Areas

2021 ◽  
Vol 10 (3) ◽  
pp. 415-430
Author(s):  
Geunhan Kim ◽  
Dongbeom Kim ◽  
Yongmyong Song ◽  
Hee-Sun Choi
2021 ◽  
Vol 10 (12) ◽  
pp. 809
Author(s):  
Jing Sun ◽  
Suwit Ongsomwang

Land surface temperature (LST) is an essential parameter in the climate system whose dynamics indicate climate change. This study aimed to assess the impact of multitemporal land use and land cover (LULC) change on LST due to urbanization in Hefei City, Anhui Province, China. The research methodology consisted of four main components: Landsat data collection and preparation; multitemporal LULC classification; time-series LST dataset reconstruction; and impact of multitemporal LULC change on LST. The results revealed that urban and built-up land continuously increased from 2.05% in 2001 to 13.25% in 2020. Regarding the impact of LULC change on LST, the spatial analysis demonstrated that the LST difference between urban and non-urban areas had been 1.52 K, 3.38 K, 2.88 K and 3.57 K in 2001, 2006, 2014 and 2020, respectively. Meanwhile, according to decomposition analysis, regarding the influence of LULC change on LST, the urban and built-up land had an intra-annual amplitude of 20.42 K higher than other types. Thus, it can be reconfirmed that land use and land cover changes due to urbanization in Hefei City impact the land surface temperature.


Author(s):  
M. R. Saradjian ◽  
Sh. Sherafati

Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas). In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST) variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM) images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.


Author(s):  
R. Bala ◽  
R. Prasad ◽  
V. P. Yadav ◽  
J. Sharma

<p><strong>Abstract.</strong> The temperature rise in urban areas has become a major environmental concern. Hence, the study of Land surface temperature (LST) in urban areas is important to understand the behaviour of different land covers on temperature. Relation of LST with different indices is required to study LST in urban areas using satellite data. The present study focuses on the relation of LST with the selected indices based on different land cover using Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) data in Varanasi, India. A regression analysis was done between LST and Normalized Difference Vegetation index (NDVI), Normalized Difference Soil Index (NDSI), Normalized Difference Built-up Index (NDBI) and Normalized Difference Water Index (NDWI). The non-linear relations of LST with NDVI and NDWI were observed, whereas NDBI and NDSI were found to show positive linear relation with LST. The correlation of LST with NDSI was found better than NDBI. Further analysis was done by choosing 25 pure pixels from each land cover of water, vegetation, bare soil and urban areas to determine the behaviour of indices on LST for each land cover. The investigation shows that NDSI and NDBI can be effectively used for study of LST in urban areas. However, NDBI can explain urban LST in the better way for the regions without water body.</p>


2021 ◽  
Vol 13 (11) ◽  
pp. 2111
Author(s):  
Anna Hellings ◽  
Andreas Rienow

Unsustainable development paths have reached critical levels in Europe. In recent years, in cities, urbanization has been contributing to the intensification of urban heat islands. To analyze the development of surface urban heat islands (SUHI) in Europe in the last few years, the present study combines the land surface temperature (LST) from MODIS with the urban classes of the CORINE land cover data within 617 functional urban areas (FUAs). Urban and industrial uses have significantly higher LST than green urban areas across all years (about 4 to 6 °C), as do agricultural areas within cities. Besides land cover, location also influences LST differences. While, e.g., Bolzano (Italy) shows particularly large LST differences (>6 °C) between the core and the commuting zone, this effect is hardly visible in Porto (Portugal) and Madrid (Spain) (<2.5 °C). Cities of moderate climates show increasing differences between a city and its commuting zones with rising LST (r = 0.68), i.e., less cooling effects at night.


Author(s):  
S. Mahmoodi ◽  
K. Dutta ◽  
D. Basu ◽  
S. Agrawal

Abstract. Satellite imageries were used to study temporal and seasonal patterns of Land Surface Temperature (LST) in Kabul, followed by establishing an interrelation with Land Use Land Cover (LULC) changes occurring in the city. LULC and LST changes were examined based on Landsat Thematic Mapper (TM) and Landsat Operational Land Imager (OLI), Thermal Infrared Sensors (TIRS). LST Maps were derived from the thermal band of Landsat images for decadal study (Winter/Summer; 2008–09 and 2018–19). Visible bands were utilized for supervised LULC classification in the same decade. Results showed that Kabul City expanded rapidly over the study period from 232.28 km2 to 371.08 km2 in one decade (2009–2019). Other land cover classes i.e. barren land, mountains and vegetation, were observed to be converted to urban class i.e. residential, commercial, and industrial. High LST zones of Kabul city consisted of mountains, barren land and urban areas. Notable difference of 3 °C was observed between urban and vegetated lands. This study successfully identified the areas (i.e. district 12, district 13 and district 17) currently affected by rapid urban sprawl. The results also highlighted the changes in LST pattern caused by urbanization. The study will help the government, private sector investors and land planners to develop sustainable land management policies.


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


Sign in / Sign up

Export Citation Format

Share Document