Extended Use of S13Cr Materials for Downhole Production Tubing

2013 ◽  
Author(s):  
R. Lee ◽  
J.E. Bol
Keyword(s):  
10.2118/94-22 ◽  
1994 ◽  
Author(s):  
S.E. Woods ◽  
S.E. Abernathy ◽  
D.G. Chambers

2021 ◽  
Author(s):  
Bipin Jain ◽  
Abhijeet Tambe ◽  
Dylan Waugh ◽  
Moises MunozRivera ◽  
Rianne Campbell

Abstract Several injection wells in Prudhoe Bay, Alaska exhibit sustained casing pressure (SCP) between the production tubing and the inner casing. The diagnostics on these wells have shown communication due to issues with casing leaks. Conventional cement systems have historically been used in coiled-tubing-delivered squeeze jobs to repair the leaks. However, even when these squeeze jobs are executed successfully, there is no guarantee in the short or long term that the annular communication is repaired. Many of these injector wells develop SCP in the range of 300-400 psi post-repair. It has been observed that the SCP development can reoccur immediately after annulus communication repair, or months to years after an injector well is put back on injection. Once SCP is developed the well cannot be operated further. A new generation of cement system was used to overcome the remedial challenge presented in these injector wells. This document provides the successful application of a specialized adaptive cement system conveyed to the problematic zone with the advantage of using coiled tubing equipment for optimum delivery of the remedial treatment.


Author(s):  
Zhi Zhang ◽  
Jinming Liu ◽  
Hongbo Huo ◽  
Tao Xie ◽  
Jie Xu ◽  
...  

2021 ◽  
Author(s):  
Aurelio Marcano Avila ◽  
Abimbola Raji ◽  
Renny Ottolina ◽  
Jose Jimenez

Abstract In the UAE, an Operator needed to perform a completion change out in a gas well, where the existing completion has been installed for over 30 years. Logging operations had revealed several leaks point in the production tubing due to corrosion. To rectify the situation, a Hydraulic Workover (HWO) Unit was proposed integrating a punch ram in the Blowout Preventer (BOP) Configuration to manage the bleed off of potential pressure trapped between the isolated sections of the completion at surface. This document describes how the highly corroded completion tubing with eleven retrievable plugs set in a live gas well was recovered. The HWO Unit was modified so that one of the cavities in the BOP stack was dressed with customized punch rams for five inch pipe, with the objective of allowing control of any potential leaks due to plug failure. The pressure relief operation could then be completed by means of punching the tubing in the controlled environment that a Stripping BOP Stack provides. This paper compiles the details of the BOP configuration and operating procedures to recover the completion by stripping out of the well and operating the punch rams with the snubbing unit. This includes the pre-job preparation required for a successful operation and the overall design with where to locate the collars and plugs for an accurate punch, and how to confirm that the plugs are holding the pressure to continue retrieving the next completion section. In the end, a safe operation was completed with zero incidents or down time allowing the intervention to continue to the next stage of recompleting the well and putting it back to production. The customer was able to get the well back to production with an alternative solution to what was initially considered, representing a significant cost and time saving.


2021 ◽  
Author(s):  
Junwen Dai ◽  
Ahmed Elsayed Fouda

Abstract Early detection of corrosion in well casings is of great importance to oil and gas well management. A typical well completion includes a production tubing inside a number of nested casings, which provide necessary well integrity and environmental protections. A multifrequency electromagnetic pipe inspection tool with multiple transmitter and receiver arrays was designed to accurately estimate the individual wall thicknesses of up to five nested pipes. The tool uses an axis-symmetric forward model to invert for wall thicknesses, among other pipe parameters. However, in cases where production occurs from two or more segregated zones, the well is generally equipped with more than one production tubing, which breaks the axial symmetry. In this paper, we show how the tool can further be employed to inspect the integrity of non-nested tubulars, such as dual completions. The performance of the tool is demonstrated using a full-scale yard mockup with known defects. A data-processing workflow, including multizone calibration and model-based inversion, is proposed to estimate the tubulars electrical conductivity, magnetic permeability, wall thickness, and eccentricity. An in-situ, multizone calibration method is applied to remove adjacent tubings influence, thus enabling accurate estimation of the thickness of outer casings without having to pull out the production tubing. In order to demonstrate the capabilities of the tool in wells with dual completions, a log was run in a 150 ft-long yard mockup with two strings of 2⅞ inch. tubing, two outer casing strings, and four different man-made defects on the casings. The tool is logged inside each of the tubing strings, and the two logs are inverted for the thickness and eccentricity of the tubing as well as the thickness of outer casings. Results from the yard test reveal that when the tool is logged in one tubing, it can accurately detect various kinds of defects on outer casings, even in the presence of a second tubing. The interference from the second tubing is shown to be minimal due to the employed calibration algorithm. A high degree of consistency is seen between the logs run in each tubing string. This suggests that if the goal is solely to monitor corrosion in the outer casings, it suffices to run the tool in only one of the tubing strings, further cutting nonproductive time. The techniques presented here enable pipe integrity monitoring without pulling the production tubings; tubings, therefore, minimizing inspection time and cost. The information provided by this tool can significantly improve the efficiency of well intervention operations, especially in areas with high corrosion rates.


2020 ◽  
Author(s):  
Gloria Isabel Duarte Poveda ◽  
Miguel Mateus Barragán ◽  
José Alexander Estévez Lizarazo ◽  
Jorge Mario Doval ◽  
Patricia Barragán

Sign in / Sign up

Export Citation Format

Share Document