Implementation Of Interval Velocity Data In The Analysis Of Vertical Fluid Migration Routes And Charging Offshore Qatar

2014 ◽  
Author(s):  
K. J. Andresen ◽  
A. Uldall ◽  
M. Hertle ◽  
L. Madsen ◽  
C. Perrin ◽  
...  
2014 ◽  
Author(s):  
K. J. Andresen ◽  
A. Uldall ◽  
M. Hertle ◽  
L. Madsen ◽  
C. Perrin ◽  
...  

Geophysics ◽  
1959 ◽  
Vol 24 (3) ◽  
pp. 443-450 ◽  
Author(s):  
A. B. Wood

This velocity study is limited to data from one well in South Texas. Two short‐interval velocity logging methods compared with conventional seismic geophone data show large discrepancies. The Shell short‐interval velocity log agrees within close limits to the conventional seismic data except for the lower 4,000 ft. The indicated delay times for the upper 2,000 ft of this 4,000‐ft interval are short by 6.5 percent, and indicated delay times for the lower 2,000 ft are short by 4.0 percent. The Schlumberger Sonic Velocity Log, limited in this survey to the bottom 4,200 ft of hole, indicated delay times larger than the seismic time by more than 5 percent. There is a difference of approximately 9 percent between the two velocity logs, even though the tools were of similar dimensions. The spacing between detectors was three feet, and the distance from transmitter to near receiver was four feet for the Shell tool and three feet for the Schlumberger tool. An analysis of the basic data is necessary to resolve these discrepancies. There is no check on the Sonic data in its present form, but a thorough study of the Shell Oscillogram log and conventional seismic data for errors fails to explain the 6.5‐percent and 4‐percent discrepancies in the Shell short‐interval velocity data. The conclusion must be drawn that these discrepancies are real. This survey demonstrates the necessity to check short‐interval velocity logging with conventional seismic shots to maintain acceptable seismic well velocity standards.


Geophysics ◽  
1999 ◽  
Vol 64 (5) ◽  
pp. 1627-1629 ◽  
Author(s):  
James G. Berryman

Gassmann’s relations are receiving more attention as seismic data are increasingly used for reservoir monitoring. Correct interpretation of underground fluid migration from seismic data requires a quantitative understanding of the relationships among the velocity data and fluid properties in the form of fluid substitution formulas, and these formulas are very commonly based on Gassmann’s equations. Nevertheless, confusion persists about the basic assumptions and the derivation of Gassmann’s (1951) well‐known equation in poroelasticity relating dry or drained bulk elastic constants to those for fluid‐saturated and undrained conditions. It is frequently stated, for example, but quite incorrect to say that Gassmann assumes the shear modulus is constant (i.e., mechanically independent of the presence of the saturating fluid). This note clarifies the situation by presenting an unusually brief derivation of Gassmann’s relations that emphasizes the true origin of the constant shear modulus result, while also clarifying the role played by the shear modulus in the derivation of the better understood result for the bulk modulus.


2018 ◽  
pp. 214-223
Author(s):  
AM Faria ◽  
MM Pimenta ◽  
JY Saab Jr. ◽  
S Rodriguez

Wind energy expansion is worldwide followed by various limitations, i.e. land availability, the NIMBY (not in my backyard) attitude, interference on birds migration routes and so on. This undeniable expansion is pushing wind farms near populated areas throughout the years, where noise regulation is more stringent. That demands solutions for the wind turbine (WT) industry, in order to produce quieter WT units. Focusing in the subject of airfoil noise prediction, it can help the assessment and design of quieter wind turbine blades. Considering the airfoil noise as a composition of many sound sources, and in light of the fact that the main noise production mechanisms are the airfoil self-noise and the turbulent inflow (TI) noise, this work is concentrated on the latter. TI noise is classified as an interaction noise, produced by the turbulent inflow, incident on the airfoil leading edge (LE). Theoretical and semi-empirical methods for the TI noise prediction are already available, based on Amiet’s broadband noise theory. Analysis of many TI noise prediction methods is provided by this work in the literature review, as well as the turbulence energy spectrum modeling. This is then followed by comparison of the most reliable TI noise methodologies, qualitatively and quantitatively, with the error estimation, compared to the Ffowcs Williams-Hawkings solution for computational aeroacoustics. Basis for integration of airfoil inflow noise prediction into a wind turbine noise prediction code is the final goal of this work.


2015 ◽  
Vol 26 (3-4) ◽  
pp. 116-123
Author(s):  
A. P. Korzh ◽  
T. V. Zahovalko

Recently, the number of published works devoted to the processes of synanthropization of fauna, is growing like an avalanche, which indicates the extreme urgency of this theme. In our view, the process of forming devices to coexist with human and the results of his life reflects the general tandency of the modern nature evolution. Urbanization is characteristic for such a specific group of animals like amphibians, the evidence of which are numerous literature data. Many researchers use this group to assess the bioindicative quality of the environment. For this aim a variety of indicators are used: from the cellular level of life of organization up to the species composition of the group in different territories. At the same time, the interpretation of the results is not always comparable for different areas and often have significantly different interpretations by experts. Urban environment, primarily due to the contamination is extremely aggressive to amphibians. As a consequence, the urban populations of amphibians may be a change in the demographic structure, affecting the reproductive ability of the population, the disappearance of the most sensitive species or individuals, resizing animals, the appearance of abnormalities in the development, etc. At the same time play an important amphibians in the ecosystems of cities, and some species in these conditions even feel relatively comfortable. Therefore, it is interesting to understand the mechanisms of self-sustaining populations of amphibians in urban environments. To assess the impact of natural and anthropogenic factors on the development of amphibian populations were used cognitive modeling using the program Vensim PLE. Cognitive map of the model for urban and suburban habitat conditions were the same. The differences concerned the strength of connections between individual factors (migration, fertility, pollution) and their orientation. In general, factors like pollution, parasites, predators had negative impact on the population, reducing its number. The birth rate, food and migration contributed to raising number of individuals. Some of the factors affected on the strength to of each other as well: the majority of the factors affected the structure of the population, had an influence on the fertility. Thanks to it the model reflects the additive effect of complex of factors on the subsequent status of the population. Proposed and analyzed four scenarios differing strength and duration of exposure. In the first scenario, a one-time contamination occurs and not subsequently repeated. The second and third scenario assumes half board contamination, 1 year (2 scenario) and two years (scenario 3). In the fourth scenario, the pollution affected the population of amphibians constantly. In accordance with the results of simulation, much weaker than the natural populations respond to pollution - have them as an intensive population growth and its disappearance at constant pollution is slow. Changes to other parameters of the model showed that this pollution is the decisive factor -only the constant action leads to a lethal outcome for the populations. All other components of the model have a corrective effect on the population dynamics, without changing its underlying trand. In urban areas due to the heavy impact of pollution maintaining the population is only possible thanks to the migration process – the constant replenishment of diminishing micropopulations of natural reserves. This confirms the assumption that the form of existence metapopulations lake frog in the city. In order to maintain the number of amphibians in urban areas at a high level it is necessary to maintain existing migration routes and the creation of new ones. Insular nature of the placement of suitable habitats in urban areas causes the metapopulation structure of the types of urbanists. Therefore, the process of urbanization is much easier for those species whicht are capable of migration in conditions of city. In the initial stages of settling the city micropopulationis formed by selective mortality of the most susceptible individuals to adverse effects. In future, maintaining the categories of individuals is provided mainly due to migration processes metapopulisation form of the species of existence is supported). It should be noted that the changes in the previous levels are always saved in future. In the case of reorganizations of individuals we of morphology can assume the existence of extremely adverse environmental conditions that threaten the extinction of the micropopulations. 


2019 ◽  
Vol 484 (1) ◽  
pp. 87-92
Author(s):  
T. M. Zlobina ◽  
V. A. Petrov ◽  
K. Yu. Murashov ◽  
A. A. Kotov

This study investigates the effect of mechanisms of paleode formations during the period of fluid inflow into the accumulation sphere of gold concentrations. Such mechanisms are believed to correspond to DC- and NDC- type seismic mechanisms, whose main influence on fluid migration lies on the formation of different, relative to fluid regime parameters, structural and hydrodynamic organizations of the ore-forming system, and fluid flow control within the area of the accumulation of ore concentrations.  


Sign in / Sign up

Export Citation Format

Share Document