Polymer Flooding for Middle and Low Permeability Sandstone Reservoirs

2013 ◽  
Author(s):  
Zhang Xiaoqin ◽  
Guan Wenting ◽  
Pan Feng
2015 ◽  
Author(s):  
C. Marliere ◽  
N. Wartenberg ◽  
M. Fleury ◽  
R. Tabary ◽  
C. Dalmazzone ◽  
...  

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 55-60
Author(s):  
Wenting Dong ◽  
Dong Zhang ◽  
Keliang Wang ◽  
Yue Qiu

AbstractPolymer flooding technology has shown satisfactorily acceptable performance in improving oil recovery from unconsolidated sandstone reservoirs. The adsorption of the polymer in the pore leads to the increase of injection pressure and the decrease of suction index, which affects the effect of polymer flooding. In this article, the water and oil content of polymer blockages, which are taken from Bohai Oilfield, are measured by weighing method. In addition, the synchronous thermal analyzer and Fourier transform infrared spectroscopy (FTIR) are used to evaluate the composition and functional groups of the blockage, respectively. Then the core flooding experiments are also utilized to assess the effect of polymer plugs on reservoir properties and optimize the best degradant formulation. The results of this investigation show that the polymer adsorption in core after polymer flooding is 0.0068 g, which results in a permeability damage rate of 74.8%. The degradation ability of the agent consisting of 1% oxidizer SA-HB and 10% HCl is the best, the viscosity of the system decreases from 501.7 to 468.5 mPa‧s.


2019 ◽  
Author(s):  
Mohammed Taha Al-Murayri ◽  
Dawood S. Kamal ◽  
Hessa M. Al-Sabah ◽  
Tareq AbdulSalam ◽  
Adnan Al-Shamali ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 327 ◽  
Author(s):  
Qian Wang ◽  
Shenglai Yang ◽  
Haishui Han ◽  
Lu Wang ◽  
Kun Qian ◽  
...  

The petrophysical properties of ultra-low permeability sandstone reservoirs near the injection wells change significantly after CO2 injection for enhanced oil recovery (EOR) and CO2 storage, and different CO2 displacement methods have different effects on these changes. In order to provide the basis for selecting a reasonable displacement method to reduce the damage to these high water cut reservoirs near the injection wells during CO2 injection, CO2-formation water alternate (CO2-WAG) flooding and CO2 flooding experiments were carried out on the fully saturated formation water cores of reservoirs with similar physical properties at in-situ reservoir conditions (78 °, 18 MPa), the similarities and differences of the changes in physical properties of the cores before and after flooding were compared and analyzed. The measurement results of the permeability, porosity, nuclear magnetic resonance (NMR) transversal relaxation time (T2) spectrum and scanning electron microscopy (SEM) of the cores show that the decrease of core permeability after CO2 flooding is smaller than that after CO2-WAG flooding, with almost unchanged porosity in both cores. The proportion of large pores decreases while the proportion of medium pores increases, the proportion of small pores remains almost unchanged, the distribution of pore size of the cores concentrates in the middle. The changes in range and amplitude of the pore size distribution in the core after CO2 flooding are less than those after CO2-WAG flooding. After flooding experiments, clay mineral, clastic fines and salt crystals adhere to some large pores or accumulate at throats, blocking the pores. The changes in core physical properties are the results of mineral dissolution and fines migration, and the differences in these changes under the two displacement methods are caused by the differences in three aspects: the degree of CO2-brine-rock interaction, the radius range of pores where fine migration occurs, the power of fine migration.


2019 ◽  
Vol 33 (12) ◽  
pp. 12170-12181 ◽  
Author(s):  
Di Wang ◽  
Shanshan Sun ◽  
Kai Cui ◽  
Hailan Li ◽  
Yejing Gong ◽  
...  

2013 ◽  
Vol 448-453 ◽  
pp. 4033-4037 ◽  
Author(s):  
Kyung Wan Yu ◽  
Byung In Choi ◽  
Kun Sang Lee

This study shows net present value (NPV) distribution by considering uncertainties in porosity, oil viscosity, water saturation, and permeability for polymer flood with Monte Carlo simulation. For high and low average permeability conditions, differences of NPV between polymer flooding and water flooding have been investigated. According to results both average NPV and range of NPV distribution tend to increase with porosity and permeability in all cases. Although water saturation and oil viscosity affect NPV, they are not important parameters that conclude uncertainty of NPV under the conditions considered in this study. For high permeability model which has Dykstra-Parsons coefficient (DP) as 0.72 and porosity as 0.3088, Monte Carol simulations for polymer flood show that 50th percentile (P50) of NPV is 352.81 M$. If porosity is decreased from 0.3088 to 0.1912, the P50 is also decreased 63.8 %. The reduction of NPV during polymer flooding in low permeability reservoirs are almost 40 % higher than that of water flood. These differences come from polymer adsorption and permeability reduction that easily occurs in low permeability zone. The procedure has proven to be useful tool to generate probability distribution of NPV when polymer flood is selected as a tertiary flood process.


Sign in / Sign up

Export Citation Format

Share Document