Scale Squeeze Treatments in Short Perforation and High Water Production ESP Wells - Application of Oilfield Scale Management Toolbox

Author(s):  
Tao Chen ◽  
Ping Chen ◽  
Harry Montgomerie ◽  
Thomas Hagen ◽  
Steve Heath
2011 ◽  
Vol 14 (01) ◽  
pp. 120-128 ◽  
Author(s):  
Guanglun Lei ◽  
Lingling Li ◽  
Hisham A. Nasr-El-Din

Summary A common problem for oil production is excessive water production, which can lead to rapid productivity decline and significant increases in operating costs. The result is often a premature shut-in of wells because production has become uneconomical. In water injectors, the injection profiles are uneven and, as a result, large amounts of oil are left behind the water front. Many chemical systems have been used to control water production and improve recovery from reservoirs with high water cut. Inorganic gels have low viscosity and can be pumped using typical field mixing and injection equipment. Polymer or crosslinked gels, especially polyacrylamide-based systems, are mainly used because of their relatively low cost and their supposed selectivity. In this paper, microspheres (5–30 μm) were synthesized using acrylamide monomers crosslinked with an organic crosslinker. They can be suspended in water and can be pumped in sandstone formations. They can plug some of the pore throats and, thus, force injected water to change its direction and increase the sweep efficiency. A high-pressure/high-temperature (HP/HT) rheometer was used to measure G (elastic modulus) and G" (viscous modulus) of these aggregates. Experimental results indicate that these microspheres are stable in solutions with 20,000 ppm NaCl at 175°F. They can expand up to five times their original size in deionized water and show good elasticity. The results of sandpack tests show that the microspheres can flow through cores with permeability greater than 500 md and can increase the resistance factor by eight to 25 times and the residual resistance factor by nine times. The addition of microspheres to polymer solutions increased the resistance factor beyond that obtained with the polymer solution alone. Field data using microspheres showed significant improvements in the injection profile and enhancements in oil production.


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Musaab I. Magzoub ◽  
Saeed Salehi ◽  
Ibnelwaleed Hussein ◽  
Mustafa Nasser

Abstract Loss circulation materials in the last two decades have witnessed a lot of developments and implementations. New technologies and materials are introduced to treat various types of loss zones. However, the success rate is still very low due to many uncertainties in the selection of types and particle size of the bridging materials. In addition, there are many operational restrictions such as the risk of plugging and pumping difficulties when large size of particle is needed, especially in deep-water drilling. In this study, polyacrylamide (PAM) crosslinked with polyethylenimine (PEI) is introduced as polymer-based mud for loss circulation treatment. The PAM/PEI systems have wide applications in water shutoff for high water production zones and are known for their strong gel and exceptional rheological properties. This study provides a rheological method for screening of PAM/PEI-based drilling formulation with optimized molecular weight and concentrations. Comparative analysis of rheology of non-crosslinked and crosslinked polyacrylamide with other drilling fluids additives as well as proper mixing procedures are provided. The results achieved in this study are used as a strong tool to design a polymer-based mud with competitive rheological properties which achieved an 80% reduction in fluid loss when compared with other conventional loss circulation materials.


2020 ◽  
Vol 8 (41) ◽  
pp. 21771-21779
Author(s):  
Jiaxiang Ma ◽  
Yu Han ◽  
Ying Xu ◽  
Tao Zhang ◽  
Jingjing Zhang ◽  
...  

An integrated photo-electro-thermal evaporation system uses a simple preparation process successfully achieves the improvement of water production rate in the day and continuous water evaporation at night.


2021 ◽  
Author(s):  
Salim Buwauqi ◽  
Ali Al Jumah ◽  
Abdulhameed Shabini ◽  
Ameera Harrasi ◽  
Tejas Kalyani ◽  
...  

Abstract One of the largest operators in the Sultanate of Oman discovered a clastic reservoir field in 1980 and put it on production in 1985. The field produces viscous oil, ranging from 200 - 2000+ cP at reservoir conditions. Over 75% of the wells drilled are horizontal wells and the field is one of the largest producers in the Sultanate of Oman. The field challenges include strong aquifer, high permeability zones/faults and large fluid mobility contrast have resulted that most of the wells started with very high-water cuts. The current field water cut is over 94%. This paper details operator's meticulous journey in qualification, field trials followed by field-wide implementation and performance evaluation of Autonomous Inflow Control Valve (AICV) technology in reducing water production and increasing oil production significantly. AICV can precisely identify the fluid flowing through it and shutting-off the high water or gas saturated zones autonomously while stimulating oil production from healthy oil-saturated zones. Like other AICDs (Autonomous Inflow Control Device) AICV can differentiate the fluid flowing through it via fluid properties such as viscosity and density at reservoir conditions. However, AICVs performance is superior due to its advanced design based on Hagen-Poiseuille and Bernoulli's principles. This paper describes an AICV completion design workflow involving a multi-disciplinary team as well as some of the field evaluation criteria to evaluate AICV well performance in the existing and in the new wells. The operator has completed several dozens of production wells with AICV technology in the field since 2018-19. Based on the field performance review, it has shown the benefit of accelerating oil production as well as reduction of unwanted water which not only reduces the OPEX of these wells but at the same time enormous positive impact on the environment. Many AICV wells started with just 25-40 % water cut and are still producing with low water cut and higher oil production. Based on the initial field-wide assessment, it is also envisaged that AICV wells will assist in achieving higher field recovery. Also, AICV helped in mitigating the facility constraints of handling produced water which will allow the operator continued to drill in-fill horizontal wells. Finally, the paper also discusses in detail the long-term performance results of some of the wells and their impact on cumulative field recovery as well as lessons learned to further optimise the well performance. The technology has a profound impact on improved sweep efficiency and as well plays an instrumental role in reducing the carbon footprint by reducing the significant water production at the surface. It is concluded that AICV technology has extended the field and wells life and proved to be the most cost-effective field-proven technology for the water shut-off application.


2021 ◽  
Author(s):  
Yong Yang ◽  
Xiaodong Li ◽  
Changwei Sun ◽  
Yuanzhi Liu ◽  
Renkai Jiang ◽  
...  

Abstract The problem of water production in carbonate reservoir is always a worldwide problem; meanwhile, in heavy oil reservoir with bottom water, rapid water breakthrough or high water cut is the development feature of this kind of reservoir; the problem of high water production in infill wells in old reservoir area is very common. Each of these three kinds of problems is difficult to be tackled for oilfield developers. When these three kinds of problems occur in a well, the difficulty of water shutoff can be imagined. Excessive water production will not only reduce the oil rate of wells, but also increase the cost of water treatment, and even lead to well shut in. Therefore, how to solve the problem of produced water from infill wells in old area of heavy oil reservoir with bottom water in carbonate rock will be the focus of this paper. This paper elaborates the application of continuous pack-off particles with ICD screen (CPI) technology in infill wells newly put into production in brown field of Liuhua, South China Sea. Liuhua oilfield is a biohermal limestone heavy oil reservoir with strong bottom water. At present, the recovery is only 11%, and the comprehensive water cut is as high as 96%. Excessive water production greatly reduces the hydrocarbon production of the oil well, which makes the production of the oilfield decrease rapidly. In order to delay the decline of oil production, Liuhua oilfield has adopted the mainstream water shutoff technology, including chemical and mechanical water shutoff methods. The application results show that the adaptability of mainstream water shutoff technology in Liuhua oilfield needs to be improved. Although CPI has achieved good water shutoff effect in the development and old wells in block 3 of Liuhua oilfield, there is no application case in the old area of Liuhua oilfield which has been developed for decades, so the application effect is still unclear. At present, the average water cut of new infill wells in the old area reaches 80% when commissioned and rises rapidly to more than 90% one month later. Considering that there is more remaining oil distribution in the old area of Liuhua oilfield and the obvious effect of CPI in block 3, it is decided to apply CPI in infill well X of old area for well completion. CPI is based on the ICD screen radial high-speed fluid containment and pack-off particles in the wellbore annulus to prevent fluid channeling axially, thus achieving well bore water shutoff and oil enhancement. As for the application in fractured reef limestone reservoir, the CPI not only has the function of wellbore water shutoff, but also fills the continuous pack-off particles into the natural fractures in the formation, so as to achieve dual water shutoff in wellbore and fractures, and further enhance the effect of water shutoff and oil enhancement. The target well X is located in the old area of Liuhua oilfield, which is a new infill well in the old area. This target well with three kinds of water problems has great risk of rapid water breakthrough. Since 2010, 7 infill wells have been put into operation in this area, and the water cut after commissioning is 68.5%~92.6%. The average water cut is 85.11% and the average oil rate is 930.92 BPD. After CPI completion in well X, the water cut is only 26% (1/3 of offset wells) and the oil rate is 1300BPD (39.6% higher than that of offset wells). The target well has achieved remarkable effect of reducing water and increasing oil. In addition, in the actual construction process, a total of 47.4m3 particles were pumped into the well, which is equivalent to 2.3 times of the theoretical volume of the annulus between the screen and the borehole wall. Among them, 20m3 continuous pack-off particles entered the annulus, and 27.4m3 continuous pack-off particles entered the natural fractures in the formation. Through the analysis of CPI completed wells in Liuhua oilfield, it is found out that the overfilling quantity is positively correlated to the effect of water shutoff and oil enhancement.


Sign in / Sign up

Export Citation Format

Share Document