High Resistivity, High Water Saturation, Addressing The Problem To Avoid Water Production

2010 ◽  
Author(s):  
Ahmed Salah Salah ◽  
Saad Hassan ◽  
mohamed sabra
2020 ◽  
Vol 26 (4) ◽  
pp. 94-110
Author(s):  
Mustafa Adil Mohammed ◽  
Sameera Hamd- Allah ◽  
Ramzy Hameed

Asmari is the main productive reservoir in Abu Ghirab oilfield in the south-east part of Iraq. It has history production extends from 1976 up to now with several close periods. Recently, the reservoir suffers some problems in production, which are abstracted as water production rising with oil production declining in most wells. The water problem type of the field and wells is identified by using Chan's diagnostic plots (water oil ratio (WOR) and derivative water oil ratio (WOR') against time). The analytical results show that water problem is caused by the channeling due to high permeability zones, high water saturation zones, and faults or fracturing. The numerical approach is also used to study the water movement inside the reservoir. A three dimensional geological and a three phase reservoir model was constructed for Asmari reservoir. The simulation model was used to visualize the water front advance in order to evaluate the water production structurally. The numerical results also show that the channeling is the main cause of water production, as well as, oil-water contact advance problem was noted due to fault sealing behavior effects.


1985 ◽  
Vol 25 (06) ◽  
pp. 945-953 ◽  
Author(s):  
Mark A. Miller ◽  
H.J. Ramey

Abstract Over the past 20 years, a number of studies have reported temperature effects on two-phase relative permeabilities in porous media. Some of the reported results, however, have been contradictory. Also, observed effects have not been explained in terms of fundamental properties known to govern two-phase flow. The purpose of this study was to attempt to isolate the fundamental properties affecting two-phase relative permeabilities at elevated temperatures. Laboratory dynamic-displacement relative permeability measurements were made on unconsolidated and consolidated sand cores with water and a refined white mineral oil. Experiments were run on 2-in. [5.1-cm] -diameter, 20-in. [52.-cm] -long cores from room temperature to 300F [149C]. Unlike previous researchers, we observed essentially no changes with temperature in either residual saturations or relative permeability relationships. We concluded that previous results may have been affected by viscous previous results may have been affected by viscous instabilities, capillary end effects, and/or difficulties in maintaining material balances. Introduction Interest in measuring relative permeabilities at elevated temperatures began in the 1960's with petroleum industry interest in thermal oil recovery. Early thermal oil recovery field operations (well heaters, steam injection, in-situ combustion) indicated oil flow rate increases far in excess of what was predicted by viscosity reductions resulting from heating. This suggested that temperature affects relative permeabilities. One of the early studies of temperature effects on relative permeabilities was presented by Edmondson, who performed dynamic displacement measurements with crude performed dynamic displacement measurements with crude and white oils and distilled water in Berea sandstone cores. Edmondson reported that residual oil saturations (ROS's) (at the end of 10 PV's of water injected) decreased with increasing temperature. Relative permeability ratios decreased with temperature at high water saturations but increased with temperature at low water saturations. A series of elevated-temperature, dynamic-displacement relative permeability measurements on clean quartz and "natural" unconsolidated sands were reported by Poston et al. Like Edmondson, Poston et al. reported a decrease in the "practical" ROS (at less than 1 % oil cut) as temperature increased. Poston et al. also reported an increase in irreducible water saturation. Although irreducible water saturations decreased with decreasing temperature, they did not revert to the original room temperature values. It was assumed that the cores became increasingly water-wet with an increase in both temperature and time; measured changes of the IFT and the contact angle with temperature increase, however, were not sufficient to explain observed effects. Davidson measured dynamic-displacement relative permeability ratios on a coarse sand and gravel core with permeability ratios on a coarse sand and gravel core with white oil displaced by distilled water, nitrogen, and superheated steam at temperatures up to 540F [282C]. Starting from irreducible water saturation, relative permeability ratio curves were similar to Edmondson's. permeability ratio curves were similar to Edmondson's. Starting from 100% oil saturation, however, the curves changed significantly only at low water saturations. A troublesome aspect of Davidson's work was that he used a hydrocarbon solvent to clean the core between experiments. No mention was made of any consideration of wettability changes, which could explain large increases in irreducible water saturations observed in some runs. Sinnokrot et al. followed Poston et al.'s suggestion of increasing water-wetness and performed water/oil capillary pressure measurements on consolidated sandstone and limestone cores from room temperature up to 325F [163C]. Sinnokrot et al confirmed that, for sandstones, irreducible water saturation appeared to increase with temperature. Capillary pressures increased with temperature, and the hysteresis between drainage and imbibition curves reduced to essentially zero at 300F [149C]. With limestone cores, however, irreducible water saturations remained constant with increase in temperature, as did capillary pressure curves. Weinbrandt et al. performed dynamic displacement experiments on small (0.24 to 0.49 cu in. [4 to 8 cm3] PV) consolidated Boise sandstone cores to 175F [75C] PV) consolidated Boise sandstone cores to 175F [75C] with distilled water and white oil. Oil relative permeabilities shifted toward high water saturations with permeabilities shifted toward high water saturations with increasing temperature, while water relative permeabilities exhibited little change. Weinbrandt et al. confirmed the findings of previous studies that irreducible water saturation increases and ROS decreases with increasing temperature. SPEJ P. 945


2011 ◽  
Vol 14 (01) ◽  
pp. 120-128 ◽  
Author(s):  
Guanglun Lei ◽  
Lingling Li ◽  
Hisham A. Nasr-El-Din

Summary A common problem for oil production is excessive water production, which can lead to rapid productivity decline and significant increases in operating costs. The result is often a premature shut-in of wells because production has become uneconomical. In water injectors, the injection profiles are uneven and, as a result, large amounts of oil are left behind the water front. Many chemical systems have been used to control water production and improve recovery from reservoirs with high water cut. Inorganic gels have low viscosity and can be pumped using typical field mixing and injection equipment. Polymer or crosslinked gels, especially polyacrylamide-based systems, are mainly used because of their relatively low cost and their supposed selectivity. In this paper, microspheres (5–30 μm) were synthesized using acrylamide monomers crosslinked with an organic crosslinker. They can be suspended in water and can be pumped in sandstone formations. They can plug some of the pore throats and, thus, force injected water to change its direction and increase the sweep efficiency. A high-pressure/high-temperature (HP/HT) rheometer was used to measure G (elastic modulus) and G" (viscous modulus) of these aggregates. Experimental results indicate that these microspheres are stable in solutions with 20,000 ppm NaCl at 175°F. They can expand up to five times their original size in deionized water and show good elasticity. The results of sandpack tests show that the microspheres can flow through cores with permeability greater than 500 md and can increase the resistance factor by eight to 25 times and the residual resistance factor by nine times. The addition of microspheres to polymer solutions increased the resistance factor beyond that obtained with the polymer solution alone. Field data using microspheres showed significant improvements in the injection profile and enhancements in oil production.


2021 ◽  
Author(s):  
Nasser Faisal Al-Khalifa ◽  
Mohammed Farouk Hassan ◽  
Deepak Joshi ◽  
Asheshwar Tiwary ◽  
Ihsan Taufik Pasaribu ◽  
...  

Abstract The Umm Gudair (UG) Field is a carbonate reservoir of West Kuwait with more than 57 years of production history. The average water cut of the field reached closed to 60 percent due to a long history of production and regulating drawdown in a different part of the field, consequentially undulating the current oil/water contact (COWC). As a result, there is high uncertainty of the current oil/water contact (COWC) that impacts the drilling strategy in the field. The typical approach used to develop the field in the lower part of carbonate is to drill deviated wells to original oil/water contact (OOWC) to know the saturation profile and later cement back up to above the high-water saturation zone and then perforate with standoff. This method has not shown encouraging results, and a high water cut presence remains. An innovative solution is required with a technology that can give a proactive approach while drilling to indicate approaching current oil/water contact and geo-stop drilling to give optimal standoff between the bit and the detected water contact (COWC). Recent development of electromagnetic (EM) look-ahead resistivity technology was considered and first implemented in the Umm Gudair (UG) Field. It is an electromagnetic-based signal that can detect the resistivity features ahead of the bit while drilling and enables proactive decisions to reduce drilling and geological or reservoir risks related to the well placement challenges.


2021 ◽  
Vol 2 ◽  
pp. 1-14
Author(s):  
Md Nahidul Hasan ◽  
Sally Potter-McIntyre ◽  
Steve Tedesco

The Kizler North Field in northwest Lyon County, Kansas, is a producing field with structures associated with both uplift of the Ancestral Rockies (Pennsylvanian to early Permian) and reactivation of structures along the Proterozoic midcontinent rift system (MRS), which contributed to the current complex and poorly understood play mechanisms. The Lower Paleozoic dolomitic Simpson Group, Viola Limestone, and “Hunton Group” are the reservoir units within the field. These units have significant vuggy porosity, which is excellent for field potential; however, in places, the reservoir is inhibited by high water saturation. The seismic data show that two late-stage wrench fault events reactivated existing faults. The observed wrench faults exhibit secondary P, R’, and R Riedel shears, which likely resulted from Central Kansas uplift-MRS wrenching. The latest stage event breached reservoir caprock units during post-Mississippian to pre-Desmoinesian time and allowed for hydrocarbon migration out of the reservoirs. Future exploration models of the Kizler North and analog fields should be based on four play concepts: 1) four-way closure with wrench-fault-related traps, 2) structural highs in the Simpson Group and Viola Limestone, 3) thick “Hunton Group,” and 4) presence of a wrench fault adjacent to the well location that generates subtle closure but not directly beneath it, which causes migration out of reservoirs. In settings where complex structural styles are overprinted, particular attention should be paid to the timing of events that may cause breaches of seals in some structures but not others. Mapping the precise location and vertical throw of the reactivated wrench faults using high-resolution seismic data can help reduce the drilling risk in analog systems.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3231
Author(s):  
Stian Almenningen ◽  
Per Fotland ◽  
Geir Ersland

This paper reports formation and dissociation patterns of methane hydrate in sandstone. Magnetic resonance imaging spatially resolved hydrate growth patterns and liberation of water during dissociation. A stacked core set-up using Bentheim sandstone with dual water saturation was designed to investigate the effect of initial water saturation on hydrate phase transitions. The growth of methane hydrate (P = 8.3 MPa, T = 1–3 °C) was more prominent in high water saturation regions and resulted in a heterogeneous hydrate saturation controlled by the initial water distribution. The change in transverse relaxation time constant, T2, was spatially mapped during growth and showed different response depending on the initial water saturation. T2 decreased significantly during growth in high water saturation regions and remained unchanged during growth in low water saturation regions. Pressure depletion from one end of the core induced a hydrate dissociation front starting at the depletion side and moving through the core as production continued. The final saturation of water after hydrate dissociation was more uniform than the initial water saturation, demonstrating the significant redistribution of water that will take place during methane gas production from a hydrate reservoir.


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Musaab I. Magzoub ◽  
Saeed Salehi ◽  
Ibnelwaleed Hussein ◽  
Mustafa Nasser

Abstract Loss circulation materials in the last two decades have witnessed a lot of developments and implementations. New technologies and materials are introduced to treat various types of loss zones. However, the success rate is still very low due to many uncertainties in the selection of types and particle size of the bridging materials. In addition, there are many operational restrictions such as the risk of plugging and pumping difficulties when large size of particle is needed, especially in deep-water drilling. In this study, polyacrylamide (PAM) crosslinked with polyethylenimine (PEI) is introduced as polymer-based mud for loss circulation treatment. The PAM/PEI systems have wide applications in water shutoff for high water production zones and are known for their strong gel and exceptional rheological properties. This study provides a rheological method for screening of PAM/PEI-based drilling formulation with optimized molecular weight and concentrations. Comparative analysis of rheology of non-crosslinked and crosslinked polyacrylamide with other drilling fluids additives as well as proper mixing procedures are provided. The results achieved in this study are used as a strong tool to design a polymer-based mud with competitive rheological properties which achieved an 80% reduction in fluid loss when compared with other conventional loss circulation materials.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Xiaolong Ma ◽  
Youhong Sun ◽  
Wei Guo ◽  
Rui Jia ◽  
Bing Li

Gas hydrates in the Shenhu area are mainly hosted in clayey silt sediments, which have the relatively high irreducible fluid saturation and gas entry pressure. And then, they will have an impact on gas production from hydrate-bearing clayey silt sediments, which was evaluated by the numerical simulations of SH2 site in Shenhu area in this paper. The results showed that, with the increase in irreducible water saturation and irreducible gas saturation, the amount of water production and gas production was obviously reduced. When the irreducible water saturation increased from 0.10 to 0.50, the cumulative CH4 production volume decreased from 1668799 m3 to 1536262 m3, and the cumulative water production volume dropped from 620304 m3 to 564797 m3, respectively. When the irreducible gas saturation increased from 0.01 to 0.05, the cumulative CH4 production volume dropped from 1812522 m3 to 1622121 m3, and the cumulative water production volume dropped from 672088 m3 to 600617 m3, respectively. In addition, the capillary pressure increased obviously with the increase in gas entry pressure, but the effect on gas production was small and the effect on water production could be negligible. In conclusion, irreducible water and gas saturation had an important effect on the gas production from gas hydrate, whereas the effects of gas entry pressure could be ignored.


Sign in / Sign up

Export Citation Format

Share Document