Development of a Polyacrylamide-Based Mud Formulation for Loss Circulation Treatments

2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Musaab I. Magzoub ◽  
Saeed Salehi ◽  
Ibnelwaleed Hussein ◽  
Mustafa Nasser

Abstract Loss circulation materials in the last two decades have witnessed a lot of developments and implementations. New technologies and materials are introduced to treat various types of loss zones. However, the success rate is still very low due to many uncertainties in the selection of types and particle size of the bridging materials. In addition, there are many operational restrictions such as the risk of plugging and pumping difficulties when large size of particle is needed, especially in deep-water drilling. In this study, polyacrylamide (PAM) crosslinked with polyethylenimine (PEI) is introduced as polymer-based mud for loss circulation treatment. The PAM/PEI systems have wide applications in water shutoff for high water production zones and are known for their strong gel and exceptional rheological properties. This study provides a rheological method for screening of PAM/PEI-based drilling formulation with optimized molecular weight and concentrations. Comparative analysis of rheology of non-crosslinked and crosslinked polyacrylamide with other drilling fluids additives as well as proper mixing procedures are provided. The results achieved in this study are used as a strong tool to design a polymer-based mud with competitive rheological properties which achieved an 80% reduction in fluid loss when compared with other conventional loss circulation materials.

2021 ◽  
Author(s):  
Yong Yang ◽  
Xiaodong Li ◽  
Changwei Sun ◽  
Yuanzhi Liu ◽  
Renkai Jiang ◽  
...  

Abstract The problem of water production in carbonate reservoir is always a worldwide problem; meanwhile, in heavy oil reservoir with bottom water, rapid water breakthrough or high water cut is the development feature of this kind of reservoir; the problem of high water production in infill wells in old reservoir area is very common. Each of these three kinds of problems is difficult to be tackled for oilfield developers. When these three kinds of problems occur in a well, the difficulty of water shutoff can be imagined. Excessive water production will not only reduce the oil rate of wells, but also increase the cost of water treatment, and even lead to well shut in. Therefore, how to solve the problem of produced water from infill wells in old area of heavy oil reservoir with bottom water in carbonate rock will be the focus of this paper. This paper elaborates the application of continuous pack-off particles with ICD screen (CPI) technology in infill wells newly put into production in brown field of Liuhua, South China Sea. Liuhua oilfield is a biohermal limestone heavy oil reservoir with strong bottom water. At present, the recovery is only 11%, and the comprehensive water cut is as high as 96%. Excessive water production greatly reduces the hydrocarbon production of the oil well, which makes the production of the oilfield decrease rapidly. In order to delay the decline of oil production, Liuhua oilfield has adopted the mainstream water shutoff technology, including chemical and mechanical water shutoff methods. The application results show that the adaptability of mainstream water shutoff technology in Liuhua oilfield needs to be improved. Although CPI has achieved good water shutoff effect in the development and old wells in block 3 of Liuhua oilfield, there is no application case in the old area of Liuhua oilfield which has been developed for decades, so the application effect is still unclear. At present, the average water cut of new infill wells in the old area reaches 80% when commissioned and rises rapidly to more than 90% one month later. Considering that there is more remaining oil distribution in the old area of Liuhua oilfield and the obvious effect of CPI in block 3, it is decided to apply CPI in infill well X of old area for well completion. CPI is based on the ICD screen radial high-speed fluid containment and pack-off particles in the wellbore annulus to prevent fluid channeling axially, thus achieving well bore water shutoff and oil enhancement. As for the application in fractured reef limestone reservoir, the CPI not only has the function of wellbore water shutoff, but also fills the continuous pack-off particles into the natural fractures in the formation, so as to achieve dual water shutoff in wellbore and fractures, and further enhance the effect of water shutoff and oil enhancement. The target well X is located in the old area of Liuhua oilfield, which is a new infill well in the old area. This target well with three kinds of water problems has great risk of rapid water breakthrough. Since 2010, 7 infill wells have been put into operation in this area, and the water cut after commissioning is 68.5%~92.6%. The average water cut is 85.11% and the average oil rate is 930.92 BPD. After CPI completion in well X, the water cut is only 26% (1/3 of offset wells) and the oil rate is 1300BPD (39.6% higher than that of offset wells). The target well has achieved remarkable effect of reducing water and increasing oil. In addition, in the actual construction process, a total of 47.4m3 particles were pumped into the well, which is equivalent to 2.3 times of the theoretical volume of the annulus between the screen and the borehole wall. Among them, 20m3 continuous pack-off particles entered the annulus, and 27.4m3 continuous pack-off particles entered the natural fractures in the formation. Through the analysis of CPI completed wells in Liuhua oilfield, it is found out that the overfilling quantity is positively correlated to the effect of water shutoff and oil enhancement.


2014 ◽  
Vol 620 ◽  
pp. 449-452 ◽  
Author(s):  
Cha Ma ◽  
Long Li ◽  
Hu Lu ◽  
Xu Bo Yuan ◽  
Gang Wang

A new kind of humic acid acetamide compoud was synthesized by chemical modification of humic acid with octadecylamine, and the effect of humic acid acetamide on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the humic acid acetamide had excellent dispersing property, and good capacity of depressing fluid loss. Moreover, the humic acid acetamide had better property of depressing fluid loss than oxidated asphalt. As a result, this humic acid acetamide is an excellent fluid loss agent for diesel oil-based drilling fluids, and is an good alternative to oxidated asphalt.


Author(s):  
Zisis Vryzas ◽  
Vassilios C. Kelessidis ◽  
Lori Nalbandian ◽  
Vassilios Zaspalis

Smart drilling fluids, which can change their properties according to the flow environment, must be carefully designed so that they can handle the difficult challenges of HP/HT drilling successfully. Due to their unique physico-chemical properties, nanoparticles (NP) are considered as very good candidates for the formulation of these smart drilling fluids. This study presents filtration and rheological results of newly developed high-performance water-based drilling fluid systems containing different nanoparticles, commercial (C) titanium oxide (TiO2) and commercial (C) copper oxide (CuO) NP and compares them with results from using custom-made (CM) iron oxide (Fe3O4) NP and commercial (C) iron oxide (Fe3O4) NP, previously reported. Novel nano-based drilling fluids were made of de-ionized water, 7 wt% commercial Na-bentonite (base fluid), and NP were added at 0.5 wt%. The rheological properties of the produced suspensions were measured at temperatures up to 60°C and at atmospheric pressure with a Couette-type viscometer. Filtration characteristics were determined at elevated pressures and temperatures in a HP/HT filter press (500 psi/176°C) using ceramic discs as filter media, of permeability, k = 775 mD. The results of this study showed that the samples containing 0.5 wt% C TiO2 caused a reduction in the fluid loss by 23%, while C CuO NP resulted in 16% reduction, when compared to that of the base fluid, at these HPHT conditions. This should be compared to the 47% and 34% reduction in fluid loss of 0.5% CM Fe3O4 NP and of 0.5% of C Fe3O4 NP, reported previously. Analysis of rheological data revealed shear-thinning behavior for all the tested novel drilling fluids. The samples containing TiO2 and CuO NP exhibited a yield stress less than that of the base fluid, compared to the increased yield stress observed for the C and CM Fe3O4 NP. This behavior can be attributed to the fact that TiO2 and CuO NP may also act as deflocculants and prevent the gelation of bentonite suspensions. This study shows that commercial nanoparticles of TiO2 and CuO do not perform as well as the Fe3O4 NP on filtration but provide drilling fluids with lower yield stresses, thus they could be considered as alternatives to Fe3O4 in situations where the rheological properties are critical.


2014 ◽  
Vol 641-642 ◽  
pp. 447-450 ◽  
Author(s):  
Long Li ◽  
Xu Bo Yuan ◽  
Cha Ma ◽  
Rong Chao Cheng ◽  
Yu Ping Yang

A new type of humic acid acetamide FLHA was synthesized by chemical modification of humic acid with long chain fatty amine, and the effect of humic acid acetamide on the rheological properties of gas-to-liquid (GTL) based drilling fluids was investigated. The results indicated that FLHA had good capacity of filtration reduction under 150 °C. Moreover, FLHA can improve the stability of GTL-based drilling fluids. As a result, FLHA is an good fluid loss additive for GTL-based drilling fluids, and it can optimizate drilling fluid system formulation to make drilling fluids have good rheological properties, filtration properties and environmental protection function.


2021 ◽  
Author(s):  
Xinliang Li ◽  
Kai Wang

Abstract During the oil and gas drilling engineering, the selection of drilling fluids must take account of the technical and environmental factors. This study investigated the effectiveness of carboxylated cellulose nanocrystals (denoted as CNCs) as environmentally friendly additives in improving the rheological, filtration, and inhibitive performances of bentonite (BT) water-based drilling fluids (WBDFs). CNCs used in this study were modified by carboxylation reaction, displaying small size, negative surface charge, good colloidal stability, and prominent shear thinning behavior. The experimental results indicated that BT/CNC suspensions had superior rheological properties, low fluid loss volumes, and effective inhibition, even at 140 °C. Microstructure analysis demonstrated that CNCs could attach to the surface of BT via hydrogen bond and ionic bond. CNCs, BT, and vicinal water molecules could form a stiff gel network, which had a strong resistance to flow under shear force, leading to a significant improvement in the rheological properties. Moreover, under the differential pressure, BT/CNC suspensions formed thin and less hydrophilic filter cakes with compact layered structure, thereby efficiently decreasing the fluid loss volume. Finally, due to the gel network and filtration ability, BT/CNC suspensions performed low water activity, which was beneficial for preventing the penetration of free water into the shales and borehole well. Thus CNCs also exerted satisfactory inhibition on hydration and dispersion of BT and shales. As a result, CNCs showed great potential to be used as efficient, multi-functional, and environmentally friendly additives in WBDFs.


2010 ◽  
Vol 6 (1) ◽  
pp. 15
Author(s):  
James P Earls ◽  
Jonathon A Leipsic ◽  
◽  

Recent reports have raised general awareness that cardiac computed tomography (CT) has the potential for relatively high effective radiation doses. While the actual amount of risk this poses to the patient is controversial, the increasing concern has led to a great deal of research on new CT techniques capable of imaging the heart at substantially lower radiation doses than was available only a few years ago. Methods of dose reduction include optimised selection of user-defined parameters, such as tube current and voltage, as well as use of new technologies, such as prospective triggering and iterative reconstruction. These techniques have each been shown to lead to substantial reduction in radiation dose without loss of diagnostic accuracy. This article will review the most frequently used and widely available methods for radiation dose reduction in cardiac CT and give practical advice on their use and limitations.


2015 ◽  
Vol 10 (1) ◽  
pp. 5-25 ◽  
Author(s):  
Jack L. Winstead ◽  
Mitchell R. Wenger

ABSTRACT This study investigates whether AIS instructors' selection of topics adequately prepares graduates for the expectations of employers seeking candidates who can adapt to the pace of technological change. As businesses adopt new technologies, stakeholders of the accounting profession must periodically reassess educational needs in the area of accounting information systems (AIS). Because AIS is a field that encompasses a wide variety of conceptual and skill-based topics, the selection of course topics can result in a “gap” between what academics and CPA firms expect from new accountants. Given the variety of topic areas, do academics and CPAs agree on which ones to emphasize, or what levels of proficiency are appropriate for each topic? In this study, academics and accountants, primarily in public practice, completed identical surveys regarding desired levels of proficiencies. The results suggest agreement on desired levels of proficiency regarding computer operation and use of accounting software to complete basic tasks and create reports, while suggesting differences of opinion in six other areas (understanding business cycles in an electronic environment, understanding data-sharing technologies, using XBRL, comprehending business needs and how technology could solve problems, understanding e-commerce, and the basics of safeguarding electronic accounting records). Participants concluded by offering observations about the strengths and weaknesses of newly employed accountants.


Author(s):  
Wei-An Huang ◽  
Jing-Wen Wang ◽  
Ming Lei ◽  
Gong-Rang Li ◽  
Zhi-Feng Duan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document