scholarly journals Reverse-phase High-Performance Liquid Chromatography Method Development and Validation for Estimation of Glimepiride in Bulk and Tablet Dosage Form

2020 ◽  
Vol 11 (02) ◽  
pp. 296-302
Author(s):  
Aseem Kumar ◽  
Anil Kumar Sharma ◽  
Rohit Dutt

The present work demonstrates a simple, rapid, precise, specific, and sensitive reverse-phase high-performance liquid chromatography (RP-HPLC) method for analyzing glimepiride in pure and tablet forms. The present method was developed using a C18 column 150 × 4.6 mm, with 5 μm, and packing L1 maintained at a temperature of 30°C. The mobile phase was prepared by dissolving 0.5 gram of monobasic sodium phosphate in 500 mL of distilled water, pH of the solution adjusted to 2.1 to 2.7 with 10% phosphoric acid, and added 500 mL of acetonitrile. The mobile phase was pumped in the highperformance liquid chromatography (HPLC) system at a flow rate of 1 mL/min, and separation was carried out at 228 nm, using an ultraviolet (UV) detector. The chromatographic separation was achieved with peak retention time (RT) at about 9.30 minutes, and the method was found to be linear over a concentration range of 40 to 140 μg/mL. The specificity of the method represented no interference of the excipients during the analysis, and stability testing after 24 hours also showed that the method is suitable and specific. The accuracy was between 99.93 to 99.96%, with limit of detection (LOD) and limit of quantitation (LOQ) being 0.354 μg/mL, 1.18 μg/mL, respectively. Satisfactory results were found for precision and robustness parameters during the development and validation stage for the analytical method. The proposed method was also adopted for the analysis of glimepiride tablets to improve the overall quality control. Using this method, symmetric peak shape was obtained with reasonable retention time. The retention time of glimepiride for six repetitions is 9.3 ± 0.1 minutes; the run time is 21 minutes. The proposed RP-HPLC method is a modification of the United States Pharmacopeia (USP) method, and it was found to be valid for glimepiride within concentration ranges 40 to 140 μg/mL, using C18 analytical columns, and isocratic elution with UV detection, and at 1 mL/min of flow rate.

Author(s):  
SAILAJA B ◽  
SRAVANA KUMARI K

Objective: The present work was focused on the development and validation of reverse-phase high-performance liquid chromatography (RP-HPLC) method which is simple, rapid, precise, accurate, sensitive, economical, and stability indicating for the quantitation of rosuvastatin calcium in bulk and tablet formulation. Methods: The separation was attained on Waters Symmetry C18 column with dimensions 150×4.6 mm, 5 mm particle size employing 0.1% orthophosphoric acid buffer:acetonitrile in the ratio of 55:45% v/v as mobile phase, which was pumped at a rate of 1.0 ml/min and detected at a wavelength of 241 nm. Results: The linearity of the method was demonstrated in the concentration range of 2–12 μg/ml for rosuvastatin calcium with a correlation coefficient (r2) of 0.999, percentage drug recovery was found to be 100.22–101.16%, and percentage relative standard deviation <2. Limit of detection and limit of quantitation values were found to be 0.013 μg/ml and 0.042 μg/ml, respectively, and assay of marketed tablet formulation was found to be 99.76%. Conclusion: The developed RP-HPLC method was found to be simple, specific, sensitive, rapid, linear, accurate, precise, and economical and could be used for regular quality control of rosuvastatin calcium in bulk and tablet formulation.


Author(s):  
Majan Naim ◽  
Aejaz Ahmed ◽  
Khan Gj

 Objective: Development and validation of stability indicating reverse-phase high- performance liquid chromatography (RP-HPLC) method for simultaneous estimation of telmisartan (TEL) and benidipine hydrochloride (BND) in pharmaceutical dosage form.Methods: Reverse phase chromatography was selected because of its suggested use for ionic and moderate to non-polar compounds. Reverse phase chromatography is simple, suitable, better regarding efficiency, stability, and reproducibility. C18 column, a 250×4.6 mm column of 5.0 μm particle packing, was selected for separation of TEL and BND. Different solvent systems were tried and optimized in combinations as mobile phase. TEL (40 μg/ml) and BND (4 μg/ml) in buffer, pH 4.0: Methanol (50:50) was developed as it was showing good peak shapes and a significant amount of resolution. The mobile phase was flowed at 1.0 ml/min with detection of both the analytes at 210 nm using photodiode array detector.Result: Development of method was done, and validation was accomplished using specificity, linearity, accuracy, precision, robustness, limit of detection, and limit of quantitation. The method was found linear from 20 to 60 μg/ml and 2–6 μg/ml for TEL and BND individually. The percentage recoveries of TEL 100.46% and BND100.08% were, respectively.Conclusion: This stability indicating RP-HPLC methods were developed by degradation of sample and compared with standard. The percentage relative standard deviation was also <2 % showing high degree of precision of the proposed method. The proposed method can be used for routine analysis of benidipine HCl and TEL in combined dosage form and quality control in bulk manufacturing.


2020 ◽  
Vol 16 ◽  
Author(s):  
Kemal Hussien Seid ◽  
Tarekegn Berhanu ◽  
Kaleab Asres ◽  
Ayenew Ashenef

Introduction: A reverse-phase high performance liquid chromatography (RP-HPLC) method was developed and validated for the simultaneous analysis of two drugs, levamisole hydrochloride(LH) and oxyclozanide(OX), in co-formulations for veterinary use. Materials and Methods: The new HPLC method was validated per ICH and other guidelines. A C18 column was used with agradient program; eluent A was an equal mixture of methanol and acetonitrile, and eluent B a 25 mM phosphate buffer at pH 7.0 containing 30 mM sodium decanesulfonate andtriethylamine(50:50:1 v/v)then pH adjusted to 7.0 with H3PO4 [51:49 v/v] .The detection wavelength was set at 220 nm.For the final gradient program, the retention times were 8.2(for LH)and 13.6(for OX) minutes respectively at flow rate of 1 ml/min over 20 minute run time. Results: The method wasprecise, specific and robust.The correlation coefficients, R2 were 0.9998 and 0.9999 for LH and OX respectively in the ranges of 5 – 280 µg / mL.The percent y-intercepts and percent residual standard deviations were 1.6%/0.4% and 1.4%/1.0% for LH and OX, respectively. The LOD and LOQ of the method were 0.21 µg / mL and 0.62 µg / mL for LHand 0.06 µg / mL and 0.18 µg / mL for OX. The method has average accuracy of 100.5% for LH and 101.1% for OX when tested on veterinary bolus formulations, and the samples couldbe stored under typical lab conditions for about 7 days without significant degradation. Conclusion: This HPLC method is suitable forassayinglevamisole hydrochloride and oxyclozanide simultaneously from veterinary formulations.


2006 ◽  
Vol 3 (1) ◽  
pp. 60-64 ◽  
Author(s):  
P. Venkata Reddy ◽  
B. Sudha Rani ◽  
G. Srinu Babu ◽  
J. V. L. N. Seshagiri Rao

A reverse phase HPLC method is developed for the determination of Raloxifene in pharmaceutical dosage forms. Chromatography was carried out on an inertsil C18 column using a mixture of acetonitrile and phosphate buffer (30:70 v/v) as the mobile phase at a flow rate of 1 mL/min. Detection was carried out at 290 nm .The retention time of the drug was 10.609 min. The method produced linear responses in the concentration range of 0.5-200 µg/mL of Raloxifene. The method was found to be applicable for determination of the drug in tablets.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Katso Binang ◽  
David T. Takuwa

Abstract The aim of the study was to develop a rapid, efficient, and cheap chromatographic method for determining four selected antihypertensive active flavonoid compounds in medicinal plants in Botswana. The determination of rutin, quercetin, and kaempferol in selected medicinal plants was conducted in less than 6 min using the developed reverse phase-high performance liquid chromatography (RP-HPLC) method with a 2.7 µm Ascentis C18 express column (150 × 4.60 mm i.d) at 340, 360, and 368 nm detection wavelengths and mobile phase of methanol and 0.068% of formic acid solution in isocratic elution. Validation results showed good selectivity, linearity (r 2 > 0.99), high percentage recoveries (90.2–104.7%), and precision (% RSD < 2) for n = 3, confirming suitability of the method for determination of the investigated flavonoids in Zingiber officinale (ginger). Application of the developed RP-HPLC method was performed in selected medicinal plants (Lippia javanica ) (mosukujane), Myrothanmus flabellious (galalatshwene), and Elephantorrhiza elephantina (mositsana) used to manage hypertension by herbalists in Botswana. M. flabellious a very commonly used plant for managing hypertension was found to contain highest amounts of rutin and myricetin, whereas nothing was detected for E. elephantina.


2021 ◽  
Vol 09 ◽  
Author(s):  
Priyanka Narula ◽  
Komal Saini ◽  
Megha Saini ◽  
Dinesh Singla ◽  
Anurag Singh Chauhan ◽  
...  

Background: Envisaging the poor solubility (56ng/ml) and permeability of tetrahydrocurcumin (THCC), it was formulated into lipidic nanostructures to enhance its bioavailability upon topical application to promote the healing process for skin inflammatory disorders. Lack of literature on suitable method for determining THCC per se and nanoformulations prompted us to develop a RP-HPLC method to detect the drug in its nanostructures and in pig ear skin post dermatokinetics. Objective: The present investigation aimed to develop a simple, precise and RP-HPLC method for the quantitative estimation of THCC in prepared lipidic nanostructures, its ointment and in skin homogenate obtained post dermatokinetic study. Method: THCC encapsulated nanostructures and ointment were formulated using modified emulsification method and embedded into an ointment base to enhance its spreadability and improve patient compliance. A fast and sensitive reverse phase high performance liquid chromatography method was developed using a Hypersil BDS reverse phase C18 column (4.6 mm × 250 mm, 5 μm) with mobile phase comprising tetrahydrofuran (THF) and 1 mgmL-1 citric acid (4:6), at a flow rate of 1.0 mLmin−1 with a run time of 20 min. Result: THCC nanostructures were successfully prepared using spontaneous microemulsification method. THCC was detected at 282 nm and revealed two peaks which were attributed to the keto-enol tautomerism in the molecule with retention times of 6.23 min and 11.06 min respectively. The assay of THCC in nanostructures and ointment was found to be 98.30% and 99.98% with entrapment efficiency 77.00±2.74 %. The dermatokinetic studies revealed sufficient release of THCC from its ointment up till 24 hr with a concentration of 1382 μgcm-2, for causing a therapeutic effect. Conclusion: The method was found to be reproducible and robust as shown by low coefficient of variation and a constant analyte/IS ratio. It was successfully employed for the estimation of THCC assay in nanostructures and it’s ointment and dermatokinetic analysis in skin.


Author(s):  
Bijithra Cholaraja ◽  
Shanmugasundaram P ◽  
Ragan G ◽  
Sankar Ask ◽  
Sumithra M

ABSTRACTObjective: To development and validation of a reversed-phase high-performance liquid chromatography (RP-HPLC) for the determination of modafinilin bulk and pharmaceutical dosage forms.Methods: A simple, precise, rapid, and accurate RP-HPLC method was developed for the estimation of modafinil in bulk and pharmaceutical dosageforms. Xterra RP 18 (250 mm × 4.6 mm, 5 µ particle size) with a mobile phase consisting of methanol:water 70:30 V/V was used. The flow rate1.0 ml/min and the effluents were monitored at 260 nm. The retention time and recovery time was 12 minutes. The detector response was linear inthe concentration of 10-50 µg/ml. The respective linear regression equation being Y=452.1x+65237. The limit of detection and limit of quantificationwere 4.547 and 1.377 mcg, respectively. The method was validated by determining its accuracy, precision, and system suitability.Result: The objective of the present work is to develop simple, precise, and reliable HPLC method for the analysis of modafinil in bulk andpharmaceutical dosage forms. This is achieved using the most commonly employed Xterra RP 18 (250 mm × 4.6 mm, 5 μ particle size) columndetection at 260 nm. The present method was validated according to ICH guidelines.Conclusion: In this study, a simple, fast and reliable HPLC method was developed and validated for the determination of modafinil in pharmaceuticalformulations.Keywords: Modafinil, Reversed-phase high-performance liquid chromatography, Estimation, ICH guidelines, Tablets. 


2021 ◽  
Vol 19 (1) ◽  
pp. 19-28
Author(s):  
SANTOSH GANDHI ◽  
MANGESH BHALEKAR ◽  
RAVINA MUTHA

The aim of the present study was to develop a simple isocratic reverse phase-high performance liquid chromatography (RP-HPLC) method and validate for the determination of fenofibrate in tablet dosage forms. RP-HPLC method was developed using Hi Q Sil C18 (250 cm × 4.6 mm, 5 μm) and mobile phase comprising 1 mM ammonium acetate buffer: Acetonitrile (10:90 v/v) at a flow rate of 1.0 mL/min. The detection was carried out at 290 nm. The retention time was found to be 6.15 ± 0.03 min. Validation of the method was performed for precision, accuracy, linearity, robustness, specificity and sensitivity to conform to the International Conference on Harmonization (ICH) guidelines. The data of linear regression analysis indicated a good linear response in the concentration range of 5 μg/mL–30 μg/mL with correlation co-efficient (R2) of 0.997. The developed method was found to be simple, sensitive, accurate and repeatable for assay of tablets of fenofibrate prepared using crystallo-co-agglomerates of the drug.


Author(s):  
M Lakshmi Kanth ◽  
B Raj Kama

An accurate RP-HPLC method developed for the estimation of Neratinib in bulk and tablet dosage form. The method is and validated for parameters linearity, accuracy, suitability, specificity, precession, LOD, LOQ and robustness. An Altima column (150 mm × 4.6 mm × 5μ) used for chromatographic separation within a runtime of 6 min. The mobile phase buffer (monopotassium phosphate) and acetonitrile (60:40 v/v) with 0.1% formic acid is used. The flow rate maintained at 1.0 ml/min with the effluents monitored at 215 nm. The Neratinib analyzed at retention time of 4.001. The concentration linear over 30-180μg/ml with regression equation y = 6065.6x + 795.43 and regression co-efficient 0.999.


Sign in / Sign up

Export Citation Format

Share Document