scholarly journals Fundamental Study on Electrical Discharge Machining in Deionized Water.

1992 ◽  
Vol 26 (53) ◽  
pp. 46-57
Author(s):  
Yoshiyuki UNO ◽  
Toshikatsu NAKAJIMA ◽  
Minoru OKADA
2015 ◽  
Vol 656-657 ◽  
pp. 335-340 ◽  
Author(s):  
Fang Pin Chuang ◽  
Yan Cherng Lin ◽  
Hsin Min Lee ◽  
Han Ming Chow ◽  
A. Cheng Wang

The environment issue and green machining technique have been induced intensive attention in recent years. It is urgently need to develop a new kind dielectric to meet the requirements for industrial applications. The aim of this study is to develop a novel dielectric using gas media immersed in deionized water for electrical discharge machining (EDM). The developed machining medium for EDM can fulfill the environmentally friendly issue and satisfy the demand of high machining performance. The experiments were conducted by this developed medium to investigate the effects of machining parameters on machining characteristics in terms of material removal rate (MRR) and surface roughness. The developed EDM medium revealed the potential to obtain a stabilizing progress with excellent machining performance and environmentally friendly feature.


2017 ◽  
Vol 11 (6) ◽  
pp. 869-877 ◽  
Author(s):  
Togo Shinonaga ◽  
◽  
Yuta Iida ◽  
Ryota Toshimitsu ◽  
Akira Okada

In recent years, one common cure for losses in joint function caused by osteoarthritis or rheumatoid arthritis is replacement with an artificial joint. For this reason, it is necessary to add osteoconductivity to artificial joint component surfaces that make contact with bone, thereby reducing the period of time necessary to fixate the bone tissue and the artificial joint component. With the intent of efficiently machining the joint shape by electrical discharge machining (EDM) and simultaneously formation of a surface with osteoconductivity, this study discusses the possibility of adding osteoconductivity to a titanium EDMed surface.


2014 ◽  
Vol 8 (5) ◽  
pp. 773-782 ◽  
Author(s):  
Tohru Ishida ◽  
◽  
Yuichi Okahara ◽  
Masahiko Kita ◽  
Akira Mizobuchi ◽  
...  

It is necessary to machine holes of complicated shapes for building pipelines of pneumatic or hydraulic equipment. However, the degrees of freedom of machinable hole shapes are limited, because holes are usually fabricated by drilling. To improve the degrees of freedom of these shapes, the authors have devised a method of fabricating a hole on the inside wall of another hole by means of electrical discharge machining. The method employs a very simple device. The results of the fundamental experiments indicate that this method has the ability to machine such a hole.


Author(s):  
Tohru ISHIDA ◽  
Yuichi OKAHARA ◽  
Masahiko KITA ◽  
Akira MIZOBUCHI ◽  
Keiichi NAKAMOTO ◽  
...  

Author(s):  
Saeed Oskueyan ◽  
Vahid Abedini ◽  
Alireza Hajialimohamadi

Nowadays, special attention is paid to the application of nanoparticles to improve the performance of Electrical Discharge Machining (EDM). In this paper, modeling and optimizing the process parameters of Nanopowder Mixed Electrical Discharge Machining (NPMEDM) is studied. In this study, the effect of aluminum oxide (Al2O3) and silicon oxide (SiO2) nanoparticles on the deionized water dielectric is investigated simultaneously in the process of electrical discharge machining of Ti-6Al-4V alloy. After analyzing the parameters, the discharge current, concentration, pulse on time, and relative composition are considered as input factors. Response Surface Methodology (RSM) using Design-Expert software is employed for the design of the experiments, analysis of the results, and optimization of the parameters. The results show that the best surface morphology is obtained by machining with the addition of nanoparticles in the relative composition of 50%. In this percentage of the composition, the surface of the workpiece has the least value of crack and recast layer. In addition, the maximum value of the material removal rate (MRR) and minimum value of tool wear rate (TWR) can be achieved in the discharge current of 12 A, pulse on-time of 100 μs, and relative composition of 75% Al2O3 – 25% SiO2.


Author(s):  
Min Li ◽  
Lanrong Cai ◽  
Junling Zhao

Successful surface modification can be obtained by Electrical Discharge Machining (EDM). In this work the discharge characteristics in misted deionized water and near-dry powder-mixed medium was studied systematically, as well as the microstructure and properties of electrical discharge strengthened layers on TC4 alloy. It indicates that the breakdown voltage of EDM in misted deionized water medium has been reduced to about 1/3 than in air medium. In near-dry powder-mixed medium, it is reduced to about 1/9, because the discharge gap is much larger than that of other mediums. In other words, a stable discharge can be obtained by larger discharge gaps and lower pulse energy than traditional EDM surface strengthening method, which leads to more stable discharge process. Experimental researches show that dense and sound combination with matrix like, multiphase hybrid intensification and chrysanthemum petal-like microstructure of strengthened layers can be observed in the near-dry powder-mixed medium. Meanwhile, it is found that the microhardness of the strengthened layer is up to about 1200 HV, which is four times higher than the base material.


Sign in / Sign up

Export Citation Format

Share Document