Effects of level of feeding and ruminally undegraded protein on ruminal bacterial protein synthesis, escape of dietary protein, intestinal amino acid profile, and performance of dairy cows.

1999 ◽  
Vol 77 (7) ◽  
pp. 1905 ◽  
Author(s):  
H Volden
1993 ◽  
Author(s):  
Gabriella A. Varga ◽  
Amichai Arieli ◽  
Lawrence D. Muller ◽  
Haim Tagari ◽  
Israel Bruckental ◽  
...  

The effect of rumen available protein amino acids and carbohydrates on microbial protein synthesis, amino acid flow and performance of high yielding dairy cows was studied. A significant relationship between the effective degradabilities of OM in feedstuffs and the in vivo ruminal OM degradation of diets of dairy cows was found. The in situ method enabled the prediction of ruminal nutrients degradability response to processing of energy and nitragenous supplements. The AA profile of the rumen undegradable protein was modified by the processing method. In a continuous culture study total N and postruminal AA flows, and bacterial efficiency, is maximal at rumen degradable levels of 65% of the CP. Responses to rumen degradable non carbohydrate (NSC) were linear up to at least 27% of DM. Higher CP flow in the abomasum was found for cows fed high ruminally degradable OM and low ruminally degradable CP diet. It appeared that in dairy cows diets, the ratio of rumen degradable OM to rumenally degradable CP should be at least 5:1 in order to maximize postruminal CP flow. The efficiency of microbial CP synthesis was higher for diets supplemented with 33% of rumen undegradable protein, with greater amounts of bacterial AA reaching the abomasum. Increase in ruminal carbohydrate availability by using high moisture corn increased proportions of propionate, postruminal nutrients flow, postruminal starch digestibility, ruminal availability of NSC, uptake of energy substrates by the mammory gland. These modifications resulted with improvement in the utilization of nonessential AA for milk protein synthesis, in higher milk protein yield. Higher postruminal NSC digestibility and higher efficiency of milk protein production were recorded in cows fed extruded corn. Increasing feeding frequency increased flow of N from the rumen to the blood, reduced diurnal variation in ruminal and ammonia, and of plasma urea and improved postruminal NSC and CIP digestibility and total tract digestibilities. Milk and constituent yield increased with more frequent feeding. In a study performed in a commercial dairy herd, changes in energy and nitrogenous substrates level suggested that increasing feeding frequency may improve dietary nitrogen utilization and may shift metabolism toward more glucogenesis. It was concluded that efficiency of milk protein yield in high producing cows might be improved by an optimization of ruminal and post-ruminal supplies of energy and nitrogenous substrates. Such an optimization can be achieved by processing of energy and nitrogenous feedstuffs, and by increasing feeding frequency. In situ data may provide means for elucidation of the optimal processing conditions.


2002 ◽  
Vol 205 (20) ◽  
pp. 3107-3122 ◽  
Author(s):  
Eleni Mente ◽  
Peter Coutteau ◽  
Dominic Houlihan ◽  
Ian Davidson ◽  
Patrick Sorgeloos

SUMMARY The effect of dietary protein on protein synthesis and growth of juvenile shrimps Litopenaeus vannamei was investigated using three different diets with equivalent protein content. Protein synthesis was investigated by a flooding dose of tritiated phenylalanine. Survival, specific growth and protein synthesis rates were higher, and protein degradation was lower, in shrimps fed a fish/squid/shrimp meal diet, or a 50% laboratory diet/50%soybean meal variant diet, than in those fed a casein-based diet. The efficiency of retention of synthesized protein as growth was 94% for shrimps fed the fish meal diet, suggesting a very low protein turnover rate; by contrast, the retention of synthesized protein was only 80% for shrimps fed the casein diet. The amino acid profile of the casein diet was poorly correlated with that of the shrimps. 4 h after a single meal the protein synthesis rates increased following an increase in RNA activity. A model was developed for amino acid flux, suggesting that high growth rates involve a reduction in the turnover of proteins, while amino acid loss appears to be high.


2012 ◽  
Vol 95 (10) ◽  
pp. 5876-5887 ◽  
Author(s):  
M.N. Haque ◽  
H. Rulquin ◽  
A. Andrade ◽  
P. Faverdin ◽  
J.L. Peyraud ◽  
...  

1975 ◽  
Vol 84 (3) ◽  
pp. 453-458 ◽  
Author(s):  
M. J. Ulyatt ◽  
J. C. Macrae ◽  
R. T. J. Clarke ◽  
P. D. Pearce

SUMMARYThe proportions of bacterial and dietary protein entering the duodenum of sheep fed fresh herbage were assessed using 2,6-diaminopimelic acid as a marker. The herbages fed wereLolium perenneL., ‘Grasslands Ruanui’ perennial ryegrass;L. (perenne × multiflorum), ‘Grasslands Manawa’ short-rotation ryegrass;Trifolium repensL., ‘Grasslands 4700’ white clover.The dietary protein degraded in the stomach was approximately 70% for all herbages. The bacterial contribution to protein entering the duodenum was 43·1, 57·1 and 52·9% for Ruanui, Manawa and white clover respectively. Protein entering the duodenum contained only a small amount of protozoal protein.Bacterial protein synthesis in the stomach was different for all three herbages, averaging 16·2, 30·7 and 19·8 g/100 g organic matter apparently digested for Ruanui, Manawa and white clover respectively. It is suggested that the micro-organisms digesting Manawa synthesized protein more efficiently.


2009 ◽  
Vol 92 (3) ◽  
pp. 1092-1107 ◽  
Author(s):  
A.F. Brito ◽  
G.F. Tremblay ◽  
H. Lapierre ◽  
A. Bertrand ◽  
Y. Castonguay ◽  
...  

Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


Sign in / Sign up

Export Citation Format

Share Document